Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan.
Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia; Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia.
Chemosphere. 2023 Jan;310:136838. doi: 10.1016/j.chemosphere.2022.136838. Epub 2022 Oct 14.
Introduction of waste and non-edible oil seeds coupled with green nanotechnology offered a pushover to sustainable and economical biofuels and bio refinery production globally. The current study encompasses the synthesis and application of novel green, highly reactive and recyclable bismuth oxide nanocatalyst derived from Euphorbia royealeana (Falc.) Boiss. leaves extract via biological method for sustainable biofuel synthesis from highly potent Cannabis sativa seed oil (34% w/w) via membrane reactors. Advanced techniques such as X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Diffraction X-Ray (EDX), and FT-IR were employed to illustrate the newly synthesized green bismuth oxide nanoparticles. 92% of FAMEs were produced under optimal reaction conditions such as a 1.5% w/w catalyst weight, 1:12 oil to methanol molar ratio, and a reaction temperature of 92 C for 3.5 h via membrane reactor. The synthesized Cannabis biodiesel was identified using the FT-IR and GC-MS techniques. The fuel properties of synthesized biofuels (acid number 0.203 mg KOH/g, density 0.8623 kg/L, kinematic viscosity 5.32 cSt, flash point 80 °C, pour point -11 °C, cloud point -11 °C, and Sulfur 0.00047 wt %, and carbon residues 0.2) were studied and established to be comparable with internationally set parameters. The experimental data (R = 0.997) shows that this reaction follow pseudo first-order kinetics. These findings affirm the application of green bismuth oxide nanoparticles as economical, highly reactive and eco-friendly candidate for industrial scale biodiesel production from non-edible oil seeds.
废物和非食用油籽与绿色纳米技术的结合,为全球可持续和经济的生物燃料和生物炼制生产提供了便利。本研究采用Euphorbia royealeana(Falc.)Boiss.叶提取物通过生物法合成了新型绿色、高反应性和可回收的氧化铋纳米催化剂,并将其应用于通过膜反应器从高含量大麻籽油(34%w/w)可持续合成生物燃料。采用X 射线衍射(XRD)、扫描电子显微镜(SEM)、能谱 X 射线(EDX)和傅里叶变换红外光谱(FT-IR)等先进技术对新合成的绿色氧化铋纳米粒子进行了说明。在最优反应条件下,如催化剂用量为 1.5%w/w、油与甲醇摩尔比为 1:12、反应温度为 92°C、反应时间为 3.5 h,通过膜反应器可得到 92%的 FAMEs。采用 FT-IR 和 GC-MS 技术对合成的大麻生物柴油进行了鉴定。合成生物燃料的燃料特性(酸值 0.203mg KOH/g、密度 0.8623kg/L、运动粘度 5.32cSt、闪点 80°C、倾点-11°C、浊点-11°C、硫含量 0.00047wt%、残碳量 0.2)进行了研究,并与国际设定的参数进行了比较。实验数据(R=0.997)表明,该反应遵循准一级动力学。这些发现证实了绿色氧化铋纳米粒子作为经济、高反应性和环保的候选物,可用于从非食用油籽中生产工业规模的生物柴油。