Suppr超能文献

支持向量机对电子病历进行深度挖掘以预测急性ST段抬高型心肌梗死的预后

Support vector machine deep mining of electronic medical records to predict the prognosis of severe acute myocardial infarction.

作者信息

Zhou Xingyu, Li Xianying, Zhang Zijun, Han Qinrong, Deng Huijiao, Jiang Yi, Tang Chunxiao, Yang Lin

机构信息

Zhuhai Campus of Zunyi Medical University, Zhuhai, China.

Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China.

出版信息

Front Physiol. 2022 Sep 29;13:991990. doi: 10.3389/fphys.2022.991990. eCollection 2022.

Abstract

Cardiovascular disease is currently one of the most important diseases causing death in China and the world, and acute myocardial infarction is a major cause of cardiovascular disease. This study provides an analytical technique for predicting the prognosis of patients with severe acute myocardial infarction using a support vector machine (SVM) technique based on information gleaned from electronic medical records in the Medical Information Marketplace for Intensive Care (MIMIC)-III database. The MIMIC-III database provided 4785 electronic medical records data for inclusion in the model development after screening 7070 electronic medical records of patients admitted to the intensive care unit for treatment of acute myocardial infarction. Adopting the APS-III score as the criterion for identifying anticipated risk, the dimensions of data information incorporated into the mathematical model design were found using correlation coefficient matrix heatmaps and ordered logistic analysis. An automated prognostic risk-prediction model was developed using SVM, and the fit was evaluated by 5× cross-validation. We used a grid search method to further optimize the parameters and improve the model fit. The excellent generalization ability of SVM was fully verified by calculating the 95% confidence interval of the area under the receiver operating characteristic curve (AUC) for six algorithms (linear discriminant, tree, Kernel Naive Bayes, RUSBoost, KNN, and SVM). Compared to the remaining five models, its confidence interval was the narrowest with higher fitting accuracy and better performance. The patient prognostic risk prediction model constructed using SVM had a relatively impressive accuracy (92.2%) and AUC value (0.98). In this study, a model was designed for fitting that can maximize the potential information to be gleaned in the electronic medical records data. It was demonstrated that SVM models based on electronic medical records data can offer an effective solution for clinical disease prognostic risk assessment and improved clinical outcomes and have great potential for clinical application in the clinical treatment of myocardial infarction.

摘要

心血管疾病是目前中国乃至全球最重要的致死病因之一,急性心肌梗死是心血管疾病的主要病因。本研究基于重症监护医学信息市场(MIMIC)-III数据库中的电子病历信息,提供了一种使用支持向量机(SVM)技术预测重症急性心肌梗死患者预后的分析技术。在筛选了7070份因急性心肌梗死入住重症监护病房治疗的患者电子病历后,MIMIC-III数据库提供了4785份电子病历数据用于模型开发。采用急性生理和慢性健康状况评分系统III(APS-III)评分作为识别预期风险的标准,通过相关系数矩阵热图和有序逻辑分析确定纳入数学模型设计的数据信息维度。使用支持向量机开发了一个自动预后风险预测模型,并通过5倍交叉验证评估拟合度。我们使用网格搜索方法进一步优化参数并提高模型拟合度。通过计算六种算法(线性判别、树、核朴素贝叶斯、RUSBoost、K近邻和支持向量机)的受试者操作特征曲线(AUC)下面积的95%置信区间,充分验证了支持向量机出色的泛化能力。与其余五个模型相比,其置信区间最窄,拟合精度更高,性能更好。使用支持向量机构建的患者预后风险预测模型具有相对可观的准确率(92.2%)和AUC值(0.98)。在本研究中,设计了一个拟合模型,该模型可以最大化从电子病历数据中获取的潜在信息。结果表明,基于电子病历数据的支持向量机模型可为临床疾病预后风险评估和改善临床结局提供有效解决方案,在心肌梗死临床治疗中具有巨大的临床应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5264/9558165/45adee22fc6e/fphys-13-991990-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验