Suppr超能文献

用于脑肿瘤诊断的可解释人工智能混合模型集成:MRI分析与预测的统一方法

Hybrid model integration with explainable AI for brain tumor diagnosis: a unified approach to MRI analysis and prediction.

作者信息

Vamsidhar D, Desai Parth, Joshi Sagar, Kolhar Shrikrishna, Deshpande Nilkanth, Gite Shilpa

机构信息

Symbiosis Institute of Technology, Symbiosis International (Deemed University), Lavale, Pune, 412115, Maharashtra, India.

出版信息

Sci Rep. 2025 Jul 1;15(1):20542. doi: 10.1038/s41598-025-06455-2.

Abstract

Effective treatment for brain tumors relies on accurate detection because this is a crucial health condition. Medical imaging plays a pivotal role in improving tumor detection and diagnosis in the early stage. This study presents two approaches to the tumor detection problem focusing on the healthcare domain. A combination of image processing, vision transformer (ViT), and machine learning algorithms is the first approach that focuses on analyzing medical images. The second approach is the parallel model integration technique, where we first integrate two pre-trained deep learning models, ResNet101, and Xception, followed by applying local interpretable model-agnostic explanations (LIME) to explain the model. The results obtained an accuracy of 98.17% for the combination of vision transformer, random forest and contrast-limited adaptive histogram equalization and 99. 67% for the parallel model integration (ResNet101 and Xception). Based on these results, this paper proposed the deep learning approach-parallel model integration technique as the most effective method. Future work aims to extend the model to multi-class classification for tumor type detection and improve model generalization for broader applicability.

摘要

脑肿瘤的有效治疗依赖于精确检测,因为这是一种关键的健康状况。医学成像在改善肿瘤早期检测和诊断方面发挥着关键作用。本研究针对医疗保健领域的肿瘤检测问题提出了两种方法。第一种方法是将图像处理、视觉Transformer(ViT)和机器学习算法相结合,专注于分析医学图像。第二种方法是并行模型集成技术,我们首先集成两个预训练的深度学习模型ResNet101和Xception,然后应用局部可解释模型无关解释(LIME)来解释模型。结果表明,视觉Transformer、随机森林和对比度受限自适应直方图均衡化相结合的准确率为98.17%,并行模型集成(ResNet101和Xception)的准确率为99.67%。基于这些结果,本文提出深度学习方法——并行模型集成技术是最有效的方法。未来的工作旨在将该模型扩展到用于肿瘤类型检测的多类分类,并提高模型的泛化能力以实现更广泛的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验