Suppr超能文献

肝细胞癌中与干性基因相关的预后模型的建立和优化。

Development and Optimization of a Prognostic Model Associated with Stemness Genes in Hepatocellular Carcinoma.

机构信息

Guangxi University of Science and Technology, Liuzhou 545006, China.

Department of Pathology, Second Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou 545006, China.

出版信息

Biomed Res Int. 2022 Oct 5;2022:9168441. doi: 10.1155/2022/9168441. eCollection 2022.

Abstract

Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide, which is associated with a variety of risk factors. Cancer stem cells are self-renewal cells, which can promote the occurrence and metastasis of tumors and enhance the drug resistance of tumor treatment. This study aimed to develop a stemness score model to assess the prognosis of hepatocellular carcinoma (HCC) patients for the optimization of treatment. The single-cell sequencing data GSE149614 was downloaded from the GEO database. Then, we compared the gene expression of hepatic stem cells and other hepatocytes in tumor samples to screen differentially expressed genes related to stemness. R package "clusterProfiler" was used to explore the potential function of stemness-related genes. We then constructed a prognostic model using LASSO regression analysis based on the TCGA and GSE14520 cohorts. The associations of stemness score with clinical features, drug sensitivity, gene mutation, and tumor immune microenvironment were further explored. R package "rms" was used to construct the nomogram model. A total of 18 stemness-related genes were enrolled to construct the prognosis model. Kaplan-Meier analysis proved the good performance of the stemness score model at predicting overall survival (OS) of HCC patients. The stemness score was closely associated with clinical features, drug sensitivity, and tumor immune microenvironment of HCC. The infiltration level of CD8 T cells was lower, and tumor-associated macrophages were higher in patients with high-stemness score, indicating an immunosuppressive microenvironment. Our study established an 18 stemness-related gene model that reliably predicts OS in HCC. The findings may help clarify the biological characteristics and progression of HCC and help the future diagnosis and therapy of HCC.

摘要

肝细胞癌 (HCC) 是全球最致命的癌症之一,与多种危险因素有关。癌症干细胞是具有自我更新能力的细胞,可促进肿瘤的发生和转移,并增强肿瘤治疗的耐药性。本研究旨在开发一种干细胞评分模型,以评估肝细胞癌 (HCC) 患者的预后,从而优化治疗方案。从 GEO 数据库中下载了单细胞测序数据 GSE149614。然后,我们比较了肿瘤样本中肝干细胞和其他肝细胞的基因表达,以筛选与干细胞特性相关的差异表达基因。使用 R 包“clusterProfiler”探索干细胞相关基因的潜在功能。然后,我们基于 TCGA 和 GSE14520 队列使用 LASSO 回归分析构建了预后模型。进一步探讨了干细胞评分与临床特征、药物敏感性、基因突变和肿瘤免疫微环境的关系。使用 R 包“rms”构建列线图模型。共纳入 18 个干细胞相关基因构建预后模型。Kaplan-Meier 分析证明干细胞评分模型在预测 HCC 患者总生存期 (OS) 方面表现良好。干细胞评分与 HCC 的临床特征、药物敏感性和肿瘤免疫微环境密切相关。高干细胞评分患者的 CD8 T 细胞浸润水平较低,肿瘤相关巨噬细胞较高,表明存在免疫抑制微环境。本研究建立了一个可靠预测 HCC OS 的 18 个干细胞相关基因模型。研究结果可能有助于阐明 HCC 的生物学特征和进展,并有助于未来 HCC 的诊断和治疗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验