Suppr超能文献

一种基于MobileNetV2结构的用于机器人图像分类的新型胶囊网络神经网络。

A novel CapsNet neural network based on MobileNetV2 structure for robot image classification.

作者信息

Zhang Jingsi, Yu Xiaosheng, Lei Xiaoliang, Wu Chengdong

机构信息

Faculty of Robot Science and Engineering, Northeastern University, Shenyang, China.

出版信息

Front Neurorobot. 2022 Sep 30;16:1007939. doi: 10.3389/fnbot.2022.1007939. eCollection 2022.

Abstract

Image classification indicates that it classifies the images into a certain category according to the information in the image. Therefore, extracting image feature information is an important research content in image classification. Traditional image classification mainly uses machine learning methods to extract features. With the continuous development of deep learning, various deep learning algorithms are gradually applied to image classification. However, traditional deep learning-based image classification methods have low classification efficiency and long convergence time. The training networks are prone to over-fitting. In this paper, we present a novel CapsNet neural network based on the MobileNetV2 structure for robot image classification. Aiming at the problem that the lightweight network will sacrifice classification accuracy, the MobileNetV2 is taken as the base network architecture. CapsNet is improved by optimizing the dynamic routing algorithm to generate the feature graph. The attention module is introduced to increase the weight of the saliency feature graph learned by the convolutional layer to improve its classification accuracy. The parallel input of spatial information and channel information reduces the computation and complexity of network. Finally, the experiments are carried out in CIFAR-100 dataset. The results show that the proposed model is superior to other robot image classification models in terms of classification accuracy and robustness.

摘要

图像分类是指根据图像中的信息将图像分类到某一类别。因此,提取图像特征信息是图像分类中的一项重要研究内容。传统的图像分类主要使用机器学习方法来提取特征。随着深度学习的不断发展,各种深度学习算法逐渐应用于图像分类。然而,传统的基于深度学习的图像分类方法分类效率低、收敛时间长,训练网络容易出现过拟合。在本文中,我们提出了一种基于MobileNetV2结构的新型CapsNet神经网络用于机器人图像分类。针对轻量级网络会牺牲分类精度的问题,以MobileNetV2作为基础网络架构,通过优化动态路由算法来改进CapsNet以生成特征图,引入注意力模块以增加卷积层学习到的显著性特征图的权重,从而提高其分类精度。空间信息和通道信息的并行输入降低了网络的计算量和复杂度。最后,在CIFAR-100数据集上进行了实验。结果表明,所提出的模型在分类精度和鲁棒性方面优于其他机器人图像分类模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffdd/9563336/2a9996d14415/fnbot-16-1007939-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验