Jana Sayantee, Sutton Mitchell, Mollayeva Tatyana, Chan Vincy, Colantonio Angela, Escobar Michael David
Department of Mathematics, Indian Institute of Technology, Hyderabad, India.
Toronto Western Hospital, Toronto, ON, Canada.
Front Big Data. 2022 Sep 28;5:793606. doi: 10.3389/fdata.2022.793606. eCollection 2022.
Multiple testing procedures (MTP) are gaining increasing popularity in various fields of biostatistics, especially in statistical genetics. However, in injury surveillance research utilizing the growing amount and complexity of health-administrative data encoded in the International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10), few studies involve MTP and discuss their applications and challenges.
We aimed to apply MTP in the population-wide context of comorbidity preceding traumatic brain injury (TBI), one of the most disabling injuries, to find a subset of comorbidity that can be targeted in primary injury prevention.
In total, 2,600 ICD-10 codes were used to assess the associations between TBI and comorbidity, with 235,003 TBI patients, on a matched data set of patients without TBI. McNemar tests were conducted on each 2,600 ICD-10 code, and appropriate multiple testing adjustments were applied using the Benjamini-Yekutieli procedure. To study the magnitude and direction of associations, odds ratios with 95% confidence intervals were constructed.
Benjamini-Yekutieli procedure captured 684 ICD-10 codes, out of 2,600, as codes positively associated with a TBI event, reducing the effective number of codes for subsequent analysis and comprehension.
Our results illustrate the utility of MTP for data mining and dimension reduction in TBI research utilizing big health-administrative data to support injury surveillance research and generate ideas for injury prevention.
多重检验程序(MTP)在生物统计学的各个领域越来越受欢迎,尤其是在统计遗传学中。然而,在利用《国际疾病分类及相关健康问题第十次修订本》(ICD - 10)编码的日益增多且复杂的卫生行政数据进行损伤监测研究时,很少有研究涉及MTP,也很少讨论其应用和挑战。
我们旨在将MTP应用于创伤性脑损伤(TBI,最致残的损伤之一)之前的共病情况的全人群背景中,以找到可在原发性损伤预防中作为目标的共病子集。
在一个无TBI患者的匹配数据集上,总共使用2600个ICD - 10编码来评估TBI与共病之间的关联,涉及235,003名TBI患者。对每个2600个ICD - 10编码进行McNemar检验,并使用Benjamini - Yekutieli程序进行适当的多重检验调整。为了研究关联的大小和方向,构建了具有95%置信区间的比值比。
在2600个ICD - 10编码中,Benjamini - Yekutieli程序捕捉到684个与TBI事件呈正相关的编码,减少了后续分析和理解的有效编码数量。
我们的结果说明了MTP在利用大型卫生行政数据进行TBI研究中的数据挖掘和降维作用,以支持损伤监测研究并为损伤预防提供思路。