Suppr超能文献

使用多目标、多分类器放射组学模型从PET/CT预测头颈部癌放疗后的局部持续/复发情况。

Predicting local persistence/recurrence after radiation therapy for head and neck cancer from PET/CT using a multi-objective, multi-classifier radiomics model.

作者信息

Zhang Qiongwen, Wang Kai, Zhou Zhiguo, Qin Genggeng, Wang Lei, Li Ping, Sher David, Jiang Steve, Wang Jing

机构信息

Department of Head and Neck Oncology, Department of Radiation Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.

Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States.

出版信息

Front Oncol. 2022 Sep 29;12:955712. doi: 10.3389/fonc.2022.955712. eCollection 2022.

Abstract

OBJECTIVES

Accurate identifying head and neck squamous cell cancer (HNSCC) patients at high risk of local persistence/recurrence (P/R) is of importance for personalized patient management. Here we developed a multi-objective, multi-classifier radiomics model for early HNSCC local P/R prediction based on post-treatment PET/CT scans and clinical data.

MATERIALS AND METHODS

We retrospectively identified 328 individuals (69 patients have local P/R) with HNSCC treated with definitive radiation therapy at our institution. The median follow-up from treatment completion to the first surveillance PET/CT imaging was 114 days (range: 82-159 days). Post-treatment PET/CT scans were reviewed and contoured for all patients. For each imaging modality, we extracted 257 radiomic features to build a multi-objective radiomics model with sensitivity, specificity, and feature sparsity as objectives for model training. Multiple representative classifiers were combined to construct the predictive model. The output probabilities of models built with features from various modalities were fused together to make the final prediction.

RESULTS

We built and evaluated three single-modality models and two multi-modality models. The combination of PET, CT, and clinical data in the multi-objective, multi-classifier radiomics model trended towards the best prediction performance, with a sensitivity of 93%, specificity of 83%, accuracy of 85%, and AUC of 0.94.

CONCLUSION

Our study demonstrates the feasibility of employing a multi-objective, multi-classifier radiomics model with PET/CT radiomic features and clinical data to predict outcomes for patients with HNSCC after radiation therapy. The proposed prediction model shows the potential to detect cancer local P/R early after radiation therapy.

摘要

目的

准确识别有局部持续存在/复发(P/R)高风险的头颈部鳞状细胞癌(HNSCC)患者对于个性化患者管理至关重要。在此,我们基于治疗后PET/CT扫描和临床数据开发了一种用于早期HNSCC局部P/R预测的多目标、多分类器放射组学模型。

材料与方法

我们回顾性确定了在本机构接受根治性放射治疗的328例HNSCC患者(69例有局部P/R)。从治疗结束到首次监测PET/CT成像的中位随访时间为114天(范围:82 - 159天)。对所有患者的治疗后PET/CT扫描进行了回顾和轮廓勾画。对于每种成像模态,我们提取了257个放射组学特征,以构建一个以敏感性、特异性和特征稀疏性为模型训练目标的多目标放射组学模型。结合多个代表性分类器构建预测模型。将使用来自各种模态特征构建的模型的输出概率融合在一起进行最终预测。

结果

我们构建并评估了三个单模态模型和两个多模态模型。多目标、多分类器放射组学模型中PET、CT和临床数据的组合在预测性能方面趋于最佳,敏感性为93%,特异性为83%,准确性为85%,AUC为0.94。

结论

我们的研究证明了采用具有PET/CT放射组学特征和临床数据的多目标、多分类器放射组学模型来预测放射治疗后HNSCC患者预后的可行性。所提出的预测模型显示了在放射治疗后早期检测癌症局部P/R的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3ee/9557184/b8fb7c146400/fonc-12-955712-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验