Suppr超能文献

浸润性乳腺癌病理特征与腋窝淋巴结转移的相关性分析。

Correlation Analysis of Pathological Features and Axillary Lymph Node Metastasis in Patients with Invasive Breast Cancer.

机构信息

Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.

General Surgery, The First Hospital of Qinhuangdao, Qinhuangdao, 066600 Hebei, China.

出版信息

J Immunol Res. 2022 Sep 19;2022:7150304. doi: 10.1155/2022/7150304. eCollection 2022.

Abstract

OBJECTIVE

To investigate the risk factors of axillary lymph node metastasis in patients with invasive breast cancer.

METHODS

This study retrospectively included 122 cases of invasive breast cancer patients admitted to the First Medical Center of PLA General Hospital from January 2019 to September 2020. According to postoperative pathological results, axillary lymph node metastasis was divided into axillary lymph node metastasis (ALNM) group ( =40) and non-axillary lymph node metastasis (NALNM) group ( =82). General demographic information was collected and compared between the two groups. Collected pathological results included lymphovascular invasion (LVI) and the expression of estrogen receptor (ER), progestogen receptor (PR), human epidermal growth factor receptor 2 (HER-2), and Ki-67 detected by immunohistochemistry. Imaging parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) including apparent diffusion coefficient (ADC), early enhanced rate, and time-intensity curve (TIC) were also included into univariate analysis. The variables with differences between the two groups were compared by univariate analysis, and the related factors of axillary lymph node metastasis were analyzed by logistic regression model.

RESULTS

There was no significant difference in general demographic information between the two groups. No significant differences were found in the positive rates of HER-2, ER, PR, Ki-67, pathological types, and clavicular lymph node metastasis and skin chest wall invasion between the two groups ( > 0.05). The proportion of LVI in ALNM group was significantly higher than that in NALNM group (37.50% vs. 6.10%, < 0.001). The proportion of breast cancer on the left side in the ALNM group was higher than that in the NALNM group, and the difference was statistically significant (70.00% vs. 47.56%, = 0.019). There were no significant differences in the imaging parameters obtained by DCE-MRI between the two groups. Binary logistics regression analysis showed that LVI (OR =12.258, 95% CI =3.681-40.812, < 0.001) and left breast cancer (OR =3.598, 95% CI =1.404-9.219, = 0.008) were risk factors for axillary lymph node metastasis in patients with invasive breast cancer.

CONCLUSION

The formation of vascular tumor thrombi in breast cancer tissue and left breast cancer are risk factors for axillary lymph node metastasis in invasive breast cancer and might be helpful for preoperative detailed assessment of the patient's condition.

摘要

目的

探讨浸润性乳腺癌患者腋窝淋巴结转移的危险因素。

方法

本研究回顾性纳入 2019 年 1 月至 2020 年 9 月期间于解放军总医院第一医学中心就诊的 122 例浸润性乳腺癌患者。根据术后病理结果,将腋窝淋巴结转移分为腋窝淋巴结转移(ALNM)组(n=40)和非腋窝淋巴结转移(NALNM)组(n=82)。收集两组患者的一般人口统计学信息,并进行比较。收集的病理结果包括淋巴血管侵犯(LVI)以及免疫组织化学检测的雌激素受体(ER)、孕激素受体(PR)、人表皮生长因子受体 2(HER-2)和 Ki-67 的表达。还纳入了动态对比增强磁共振成像(DCE-MRI)的影像学参数,包括表观扩散系数(ADC)、早期增强率和时间-强度曲线(TIC),进行单因素分析。采用单因素分析比较两组间有差异的变量,并采用 logistic 回归模型分析腋窝淋巴结转移的相关因素。

结果

两组患者的一般人口统计学信息无显著差异。两组间 HER-2、ER、PR、Ki-67 阳性率、病理类型、锁骨淋巴结转移和皮肤胸壁侵犯比较,差异均无统计学意义(>0.05)。ALNM 组 LVI 阳性率明显高于 NALNM 组(37.50%比 6.10%,<0.001)。ALNM 组左侧乳腺癌比例高于 NALNM 组,差异有统计学意义(70.00%比 47.56%,=0.019)。两组 DCE-MRI 获得的影像学参数无显著差异。二元逻辑回归分析显示,LVI(OR=12.258,95%CI=3.681-40.812,<0.001)和左侧乳腺癌(OR=3.598,95%CI=1.404-9.219,=0.008)是浸润性乳腺癌患者腋窝淋巴结转移的危险因素。

结论

乳腺癌组织中血管肿瘤栓子的形成和左侧乳腺癌是浸润性乳腺癌腋窝淋巴结转移的危险因素,有助于术前对患者病情进行详细评估。

相似文献

1
Correlation Analysis of Pathological Features and Axillary Lymph Node Metastasis in Patients with Invasive Breast Cancer.
J Immunol Res. 2022 Sep 19;2022:7150304. doi: 10.1155/2022/7150304. eCollection 2022.
4
Breast MRI for prediction of lymphovascular invasion in breast cancer patients with clinically negative axillary lymph nodes.
Eur J Radiol. 2018 Oct;107:111-118. doi: 10.1016/j.ejrad.2018.08.024. Epub 2018 Aug 27.
7
Early-stage invasive ductal carcinoma: Association of tumor apparent diffusion coefficient values with axillary lymph node metastasis.
Eur J Radiol. 2015 Nov;84(11):2137-43. doi: 10.1016/j.ejrad.2015.08.009. Epub 2015 Aug 20.
8
Frequency and Predictors of Axillary Lymph Node Metastases in Iranian Women with Early Breast Cancer.
Asian Pac J Cancer Prev. 2018 Jun 25;19(6):1617-1620. doi: 10.22034/APJCP.2018.19.6.1617.

引用本文的文献

1
A Machine-Learning Model for the Prediction of Triple-Negative Breast Cancer Based on Multiparameter MRI.
Breast Cancer (Dove Med Press). 2025 Jul 15;17:611-625. doi: 10.2147/BCTT.S513779. eCollection 2025.
8
Identifying the risk factors and developing a predictive model for postoperative pelvic floor dysfunction in cervical cancer patients.
Transl Cancer Res. 2023 May 31;12(5):1307-1314. doi: 10.21037/tcr-23-385. Epub 2023 Apr 24.
10
Establishment and validation of a long-term prognosis prediction model for patients with non-small cell lung cancer.
J Thorac Dis. 2023 Apr 28;15(4):1994-2002. doi: 10.21037/jtd-23-381. Epub 2023 Apr 24.

本文引用的文献

2
Breast cancer patients with a negative axillary ultrasound may have clinically significant nodal metastasis.
Breast Cancer Res Treat. 2021 Jun;187(2):303-310. doi: 10.1007/s10549-021-06194-8. Epub 2021 Apr 10.
3
Breast cancer.
Lancet. 2021 May 8;397(10286):1750-1769. doi: 10.1016/S0140-6736(20)32381-3. Epub 2021 Apr 1.
4
Radiomics MRI for lymph node status prediction in breast cancer patients: the state of art.
J Cancer Res Clin Oncol. 2021 Jun;147(6):1587-1597. doi: 10.1007/s00432-021-03606-6. Epub 2021 Mar 23.
9
Radiomics Nomogram of DCE-MRI for the Prediction of Axillary Lymph Node Metastasis in Breast Cancer.
Front Oncol. 2020 Oct 27;10:541849. doi: 10.3389/fonc.2020.541849. eCollection 2020.
10
Risk-adapted adjuvant therapy of luminal early breast cancer in 2020.
Curr Opin Obstet Gynecol. 2021 Feb 1;33(1):53-58. doi: 10.1097/GCO.0000000000000679.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验