Suppr超能文献

基于浸润性乳腺癌原发灶磁共振成像影像组学模型预测腋窝淋巴结转移。

Prediction of axillary lymph node metastasis using a magnetic resonance imaging radiomics model of invasive breast cancer primary tumor.

机构信息

Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou, Jiangsu, 215163, China.

Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China.

出版信息

Cancer Imaging. 2024 Sep 13;24(1):122. doi: 10.1186/s40644-024-00771-y.

Abstract

BACKGROUND

This study investigated the clinical value of breast magnetic resonance imaging (MRI) radiomics for predicting axillary lymph node metastasis (ALNM) and to compare the discriminative abilities of different combinations of MRI sequences.

METHODS

This study included 141 patients diagnosed with invasive breast cancer from two centers (center 1: n = 101, center 2: n = 40). Patients from center 1 were randomly divided into training set and test set 1. Patients from center 2 were assigned to the test set 2. All participants underwent preoperative MRI, and four distinct MRI sequences were obtained. The volume of interest (VOI) of the breast tumor was delineated on the dynamic contrast-enhanced (DCE) postcontrast phase 2 sequence, and the VOIs of other sequences were adjusted when required. Subsequently, radiomics features were extracted from the VOIs using an open-source package. Both single- and multisequence radiomics models were constructed using the logistic regression method in the training set. The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and precision of the radiomics model for the test set 1 and test set 2 were calculated. Finally, the diagnostic performance of each model was compared with the diagnostic level of junior and senior radiologists.

RESULTS

The single-sequence ALNM classifier derived from DCE postcontrast phase 1 had the best performance for both test set 1 (AUC = 0.891) and test set 2 (AUC = 0.619). The best-performing multisequence ALNM classifiers for both test set 1 (AUC = 0.910) and test set 2 (AUC = 0.717) were generated from DCE postcontrast phase 1, T2-weighted imaging, and diffusion-weighted imaging single-sequence ALNM classifiers. Both had a higher diagnostic level than the junior and senior radiologists.

CONCLUSIONS

The combination of DCE postcontrast phase 1, T2-weighted imaging, and diffusion-weighted imaging radiomics features had the best performance in predicting ALNM from breast cancer. Our study presents a well-performing and noninvasive tool for ALNM prediction in patients with breast cancer.

摘要

背景

本研究旨在探讨乳腺磁共振成像(MRI)放射组学预测腋窝淋巴结转移(ALNM)的临床价值,并比较不同 MRI 序列组合的鉴别能力。

方法

本研究纳入了来自两个中心(中心 1:n=101,中心 2:n=40)的 141 例浸润性乳腺癌患者。中心 1 的患者被随机分为训练集和测试集 1。中心 2 的患者被分配至测试集 2。所有参与者均接受术前 MRI 检查,并获得了四个不同的 MRI 序列。在动态对比增强(DCE)后对比相 2 序列上勾画乳腺肿瘤的感兴趣区(VOI),并在必要时调整其他序列的 VOI。随后,使用开源软件包从 VOI 中提取放射组学特征。使用逻辑回归方法在训练集中构建单序列和多序列放射组学模型。计算放射组学模型在测试集 1 和测试集 2 的受试者工作特征曲线下面积(AUC)、准确性、敏感度、特异度和精确度。最后,比较了每个模型的诊断性能与初级和高级放射科医生的诊断水平。

结果

来自 DCE 后对比相 1 的单序列 ALNM 分类器在测试集 1(AUC=0.891)和测试集 2(AUC=0.619)中均具有最佳性能。对于测试集 1(AUC=0.910)和测试集 2(AUC=0.717),性能最佳的多序列 ALNM 分类器分别由 DCE 后对比相 1、T2 加权成像和扩散加权成像单序列 ALNM 分类器生成。它们的诊断水平均高于初级和高级放射科医生。

结论

DCE 后对比相 1、T2 加权成像和扩散加权成像放射组学特征的组合在预测乳腺癌的 ALNM 方面表现最佳。本研究为乳腺癌患者的 ALNM 预测提供了一种性能良好且无创的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b28e/11395190/155d07d2d358/40644_2024_771_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验