Suppr超能文献

通过机器学习和神经网络对具有上位性的性状进行基因组预测。

Genomic prediction through machine learning and neural networks for traits with epistasis.

作者信息

Costa Weverton Gomes da, Celeri Maurício de Oliveira, Barbosa Ivan de Paiva, Silva Gabi Nunes, Azevedo Camila Ferreira, Borem Aluizio, Nascimento Moysés, Cruz Cosme Damião

机构信息

Department of General Biology, Bioinformatics Laboratory, Federal University of Viçosa, Viçosa, MG, Brazil.

Department of Statistics, Laboratory of Computational Intelligence and Statistical Learning, Federal University of Viçosa - UFV, Viçosa, MG, Brazil.

出版信息

Comput Struct Biotechnol J. 2022 Sep 24;20:5490-5499. doi: 10.1016/j.csbj.2022.09.029. eCollection 2022.

Abstract

Genomic wide selection (GWS) is one contributions of molecular genetics to breeding. Machine learning (ML) and artificial neural networks (ANN) methods are non-parameterized and can develop more accurate and parsimonious models for GWS analysis. Multivariate Adaptive Regression Splines (MARS) is considered one of the most flexible ML methods, automatically modeling nonlinearities and interactions of the predictor variables. This study aimed to evaluate and compare methods based on ANN, ML, including MARS, and G-BLUP through GWS. An F2 population formed by 1000 individuals and genotyped for 4010 SNP markers and twelve traits from a model considering epistatic effect, with QTL numbers ranging from eight to 480 and heritability ( ) of 0.3, 0.5 or 0.8 were simulated. Variation in heritability and number of QTL impacts the performance of methods. About quantitative traits (40, 80, 120, 240, and 480 QTLs) was observed highest R2 to Radial Base Network (RBF) and G-BLUP, followed by Random Forest (RF), Bagging (BA), and Boosting (BO). RF and BA also showed better results for traits to of 0.3 with values 16.51% and 16.30%, respectively, while MARS methods showed better results for oligogenic traits with values ranging from 39,12 % to 43,20 % in of 0.5 and from 59.92% to 78,56% in of 0.8. Non-additive MARS methods also showed high R2 for traits with high heritability and 240 QTLs or more. ANN and ML methods are powerful tools to predict genetic values in traits with epistatic effect, for different degrees of heritability and QTL numbers.

摘要

全基因组选择(GWS)是分子遗传学对育种的贡献之一。机器学习(ML)和人工神经网络(ANN)方法是非参数化的,能够为GWS分析开发更准确、更简洁的模型。多元自适应回归样条(MARS)被认为是最灵活的ML方法之一,可自动对预测变量的非线性和相互作用进行建模。本研究旨在通过GWS评估和比较基于ANN、ML(包括MARS)和G-BLUP的方法。模拟了一个由1000个个体组成的F2群体,对4010个SNP标记进行了基因分型,并针对考虑上位性效应的模型中的12个性状进行了模拟,QTL数量范围为8至480,遗传力( )为0.3、0.5或0.8。遗传力和QTL数量的变化会影响方法的性能。对于数量性状(40、80、120、240和480个QTL),观察到径向基网络(RBF)和G-BLUP的R2最高,其次是随机森林(RF)、装袋法(BA)和提升法(BO)。对于遗传力为0.3的性状,RF和BA也表现出较好的结果,其 值分别为16.51%和16.30%,而MARS方法对于寡基因性状表现出较好的结果,在遗传力为0.5时 值范围为39.12%至43.20%,在遗传力为0.8时 值范围为59.92%至78.56%。非加性MARS方法对于高遗传力且有240个或更多QTL的性状也显示出较高的R2。对于具有上位性效应、不同遗传力程度和QTL数量的性状,ANN和ML方法是预测遗传值的强大工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验