Suppr超能文献

使用比较与类别标签提高早产儿视网膜病变深度学习模型的训练效率

Improved Training Efficiency for Retinopathy of Prematurity Deep Learning Models Using Comparison versus Class Labels.

作者信息

Hanif Adam, Yıldız İlkay, Tian Peng, Kalkanlı Beyza, Erdoğmuş Deniz, Ioannidis Stratis, Dy Jennifer, Kalpathy-Cramer Jayashree, Ostmo Susan, Jonas Karyn, Chan R V Paul, Chiang Michael F, Campbell J Peter

机构信息

Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon.

Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts.

出版信息

Ophthalmol Sci. 2022 Feb 2;2(2):100122. doi: 10.1016/j.xops.2022.100122. eCollection 2022 Jun.

Abstract

PURPOSE

To compare the efficacy and efficiency of training neural networks for medical image classification using comparison labels indicating relative disease severity versus diagnostic class labels from a retinopathy of prematurity (ROP) image dataset.

DESIGN

Evaluation of diagnostic test or technology.

PARTICIPANTS

Deep learning neural networks trained on expert-labeled wide-angle retinal images obtained from patients undergoing diagnostic ROP examinations obtained as part of the Imaging and Informatics in ROP (i-ROP) cohort study.

METHODS

Neural networks were trained with either class or comparison labels indicating plus disease severity in ROP retinal fundus images from 2 datasets. After training and validation, all networks underwent evaluation using a separate test dataset in 1 of 2 binary classification tasks: normal versus abnormal or plus versus nonplus.

MAIN OUTCOME MEASURES

Area under the receiver operating characteristic curve (AUC) values were measured to assess network performance.

RESULTS

Given the same number of labels, neural networks learned more efficiently by comparison, generating significantly higher AUCs in both classification tasks across both datasets. Similarly, given the same number of images, comparison learning developed networks with significantly higher AUCs across both classification tasks in 1 of 2 datasets. The difference in efficiency and accuracy between models trained on either label type decreased as the size of the training set increased.

CONCLUSIONS

Comparison labels individually are more informative and more abundant per sample than class labels. These findings indicate a potential means of overcoming the common obstacle of data variability and scarcity when training neural networks for medical image classification tasks.

摘要

目的

使用表示相对疾病严重程度的比较标签与来自早产儿视网膜病变(ROP)图像数据集的诊断类别标签,比较训练用于医学图像分类的神经网络的功效和效率。

设计

诊断测试或技术评估。

参与者

在作为ROP成像与信息学(i-ROP)队列研究一部分而获得的、由专家标注的广角视网膜图像上训练的深度学习神经网络,这些图像来自接受ROP诊断检查的患者。

方法

使用表示ROP视网膜眼底图像中疾病严重程度的类别标签或比较标签,对来自2个数据集的神经网络进行训练。训练和验证后,所有网络在2个二元分类任务中的1个中使用单独的测试数据集进行评估:正常与异常或疾病严重程度增加与未增加。

主要观察指标

测量受试者操作特征曲线(AUC)下的面积值以评估网络性能。

结果

在标签数量相同的情况下,通过比较,神经网络学习效率更高,在两个数据集中的两个分类任务中均产生显著更高 的AUC。同样,在图像数量相同的情况下,比较学习在2个数据集中的1个中的两个分类任务中开发出具有显著更高AUC的网络。随着训练集规模的增加,在任一标签类型上训练的模型之间的效率和准确性差异减小。

结论

与类别标签相比,比较标签单独来看每个样本的信息更丰富且更充足。这些发现表明,在为医学图像分类任务训练神经网络时,存在一种克服数据变异性和稀缺性这一常见障碍的潜在方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0944/9560533/5db92ee6a45f/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验