Suppr超能文献

最小化未标记数据的估计风险:半监督医学图像分割的一种新公式化方法。

Minimizing Estimated Risks on Unlabeled Data: A New Formulation for Semi-Supervised Medical Image Segmentation.

作者信息

Wu Fuping, Zhuang Xiahai

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 May;45(5):6021-6036. doi: 10.1109/TPAMI.2022.3215186. Epub 2023 Apr 3.

Abstract

Supervised segmentation can be costly, particularly in applications of biomedical image analysis where large scale manual annotations from experts are generally too expensive to be available. Semi-supervised segmentation, able to learn from both the labeled and unlabeled images, could be an efficient and effective alternative for such scenarios. In this work, we propose a new formulation based on risk minimization, which makes full use of the unlabeled images. Different from most of the existing approaches which solely explicitly guarantee the minimization of prediction risks from the labeled training images, the new formulation also considers the risks on unlabeled images. Particularly, this is achieved via an unbiased estimator, based on which we develop a general framework for semi-supervised image segmentation. We validate this framework on three medical image segmentation tasks, namely cardiac segmentation on ACDC2017, optic cup and disc segmentation on REFUGE dataset and 3D whole heart segmentation on MM-WHS dataset. Results show that the proposed estimator is effective, and the segmentation method achieves superior performance and demonstrates great potential compared to the other state-of-the-art approaches. Our code and data will be released via https://zmiclab.github.io/projects.html, once the manuscript is accepted for publication.

摘要

监督分割成本可能很高,特别是在生物医学图像分析应用中,专家进行大规模手动标注通常成本过高而难以实现。半监督分割能够从有标签和无标签图像中学习,对于此类场景可能是一种高效且有效的替代方法。在这项工作中,我们提出了一种基于风险最小化的新公式,该公式充分利用了无标签图像。与大多数现有方法不同,现有方法仅明确保证最小化来自有标签训练图像的预测风险,而新公式还考虑了无标签图像上的风险。特别是,这是通过一个无偏估计器实现的,基于此我们开发了一个半监督图像分割的通用框架。我们在三个医学图像分割任务上验证了这个框架,即ACDC2017上的心脏分割、REFUGE数据集上的视盘分割以及MM-WHS数据集上的3D全心分割。结果表明,所提出的估计器是有效的,并且与其他现有最先进方法相比,该分割方法具有卓越的性能并展现出巨大潜力。一旦本文被接受发表,我们的代码和数据将通过https://zmiclab.github.io/projects.html发布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验