Suppr超能文献

基于变分近似的无监督域自适应的心脏分割。

Unsupervised Domain Adaptation With Variational Approximation for Cardiac Segmentation.

出版信息

IEEE Trans Med Imaging. 2021 Dec;40(12):3555-3567. doi: 10.1109/TMI.2021.3090412. Epub 2021 Nov 30.

Abstract

Unsupervised domain adaptation is useful in medical image segmentation. Particularly, when ground truths of the target images are not available, domain adaptation can train a target-specific model by utilizing the existing labeled images from other modalities. Most of the reported works mapped images of both the source and target domains into a common latent feature space, and then reduced their discrepancy either implicitly with adversarial training or explicitly by directly minimizing a discrepancy metric. In this work, we propose a new framework, where the latent features of both domains are driven towards a common and parameterized variational form, whose conditional distribution given the image is Gaussian. This is achieved by two networks based on variational auto-encoders (VAEs) and a regularization for this variational approximation. Both of the VAEs, each for one domain, contain a segmentation module, where the source segmentation is trained in a supervised manner, while the target one is trained unsupervisedly. We validated the proposed domain adaptation method using two cardiac segmentation tasks, i.e., the cross-modality (CT and MR) whole heart segmentation and the cross-sequence cardiac MR segmentation. Results show that the proposed method achieved better accuracies compared to two state-of-the-art approaches and demonstrated good potential for cardiac segmentation. Furthermore, the proposed explicit regularization was shown to be effective and efficient in narrowing down the distribution gap between domains, which is useful for unsupervised domain adaptation. The code and data have been released via https://zmiclab.github.io/projects.html.

摘要

无监督域自适应在医学图像分割中很有用。特别是,当目标图像的地面实况不可用时,域自适应可以通过利用来自其他模态的现有带标签图像来训练特定于目标的模型。大多数报道的工作将源域和目标域的图像映射到一个公共的潜在特征空间中,然后通过对抗性训练隐式或直接通过最小化差异度量显式地减少它们的差异。在这项工作中,我们提出了一个新的框架,其中两个域的潜在特征都被驱动到一个公共的参数化变分形式,其条件分布是高斯的。这是通过两个基于变分自动编码器 (VAE) 的网络和这种变分逼近的正则化来实现的。每个域的 VAEs 都包含一个分割模块,其中源分割是在监督方式下训练的,而目标分割是在无监督方式下训练的。我们使用两个心脏分割任务验证了所提出的域自适应方法,即跨模态(CT 和 MR)全心脏分割和跨序列心脏 MR 分割。结果表明,与两种最先进的方法相比,所提出的方法实现了更好的准确性,并展示了在心脏分割方面的良好潜力。此外,所提出的显式正则化被证明在缩小域之间的分布差距方面是有效和高效的,这对于无监督域自适应很有用。代码和数据已通过 https://zmiclab.github.io/projects.html 发布。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验