Suppr超能文献

LANCE:一种使用卷积神经网络图像分析的无标记活凋亡和坏死细胞探测仪。

LANCE: a Label-Free Live Apoptotic and Necrotic Cell Explorer Using Convolutional Neural Network Image Analysis.

机构信息

Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O"Hara Street, Pittsburgh, Pennsylvania15260, United States.

UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania15232, United States.

出版信息

Anal Chem. 2022 Nov 1;94(43):14827-14834. doi: 10.1021/acs.analchem.2c00878. Epub 2022 Oct 17.

Abstract

Identifying and quantifying cell death is the basis for all cell death research. Current methods for obtaining these quantitative measurements rely on established biomarkers, yet the marker-based approach suffers from limited marker specificity, high cost of reagents, lengthy sample preparation, and fluorescence imaging. Based on the morphological difference, we developed a Live, Apoptotic, and Necrotic Cell Explorer (LANCE) to categorize cell death status in a label-free manner, by incorporating machine learning and image processing. The LANCE workflow includes cropping individual cells from microscopic images having hundreds of cells, formation of an image database of around 5000 events, training and validation of the convolutional neural network models using multiple cell lines, and treatment conditions. With LANCE, we precisely categorized live, apoptotic, and necrotic cells with a high accuracy of 96.3 ± 0.5%. More importantly, the nondestructive label-free LANCE method allows for tracking time dynamics of the cell death process, which enhances the understanding of subtle cell death regulation at the molecular level. Hence, LANCE is a fast, low-cost, and nondestructive label-free method to distinguish cell status, which can be applied to cell death studies as well as many other biomedical applications.

摘要

鉴定和量化细胞死亡是所有细胞死亡研究的基础。目前获得这些定量测量的方法依赖于已建立的生物标志物,但基于标志物的方法存在标记特异性有限、试剂成本高、样品制备时间长和荧光成像等问题。基于形态差异,我们开发了一种 Live、Apoptotic、和 Necrotic Cell Explorer (LANCE),通过结合机器学习和图像处理,以无标记的方式对细胞死亡状态进行分类。LANCE 工作流程包括从数百个细胞的显微镜图像中裁剪单个细胞,形成大约 5000 个事件的图像数据库,使用多个细胞系和处理条件对卷积神经网络模型进行训练和验证。使用 LANCE,我们可以准确地将活细胞、凋亡细胞和坏死细胞分类,准确率高达 96.3±0.5%。更重要的是,这种无损的无标记 LANCE 方法可以跟踪细胞死亡过程的时间动态,从而增强对分子水平上微妙细胞死亡调控的理解。因此,LANCE 是一种快速、低成本、无损的无标记方法,可以区分细胞状态,可应用于细胞死亡研究以及许多其他生物医学应用。

相似文献

4
LIVECell-A large-scale dataset for label-free live cell segmentation.LiveCell-A 大型无标记活细胞分割数据集。
Nat Methods. 2021 Sep;18(9):1038-1045. doi: 10.1038/s41592-021-01249-6. Epub 2021 Aug 30.
9
Deep Learning-Based Single-Cell Optical Image Studies.基于深度学习的单细胞光学图像研究。
Cytometry A. 2020 Mar;97(3):226-240. doi: 10.1002/cyto.a.23973. Epub 2020 Jan 25.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验