Suppr超能文献

LANCE:一种使用卷积神经网络图像分析的无标记活凋亡和坏死细胞探测仪。

LANCE: a Label-Free Live Apoptotic and Necrotic Cell Explorer Using Convolutional Neural Network Image Analysis.

机构信息

Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O"Hara Street, Pittsburgh, Pennsylvania15260, United States.

UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania15232, United States.

出版信息

Anal Chem. 2022 Nov 1;94(43):14827-14834. doi: 10.1021/acs.analchem.2c00878. Epub 2022 Oct 17.

Abstract

Identifying and quantifying cell death is the basis for all cell death research. Current methods for obtaining these quantitative measurements rely on established biomarkers, yet the marker-based approach suffers from limited marker specificity, high cost of reagents, lengthy sample preparation, and fluorescence imaging. Based on the morphological difference, we developed a Live, Apoptotic, and Necrotic Cell Explorer (LANCE) to categorize cell death status in a label-free manner, by incorporating machine learning and image processing. The LANCE workflow includes cropping individual cells from microscopic images having hundreds of cells, formation of an image database of around 5000 events, training and validation of the convolutional neural network models using multiple cell lines, and treatment conditions. With LANCE, we precisely categorized live, apoptotic, and necrotic cells with a high accuracy of 96.3 ± 0.5%. More importantly, the nondestructive label-free LANCE method allows for tracking time dynamics of the cell death process, which enhances the understanding of subtle cell death regulation at the molecular level. Hence, LANCE is a fast, low-cost, and nondestructive label-free method to distinguish cell status, which can be applied to cell death studies as well as many other biomedical applications.

摘要

鉴定和量化细胞死亡是所有细胞死亡研究的基础。目前获得这些定量测量的方法依赖于已建立的生物标志物,但基于标志物的方法存在标记特异性有限、试剂成本高、样品制备时间长和荧光成像等问题。基于形态差异,我们开发了一种 Live、Apoptotic、和 Necrotic Cell Explorer (LANCE),通过结合机器学习和图像处理,以无标记的方式对细胞死亡状态进行分类。LANCE 工作流程包括从数百个细胞的显微镜图像中裁剪单个细胞,形成大约 5000 个事件的图像数据库,使用多个细胞系和处理条件对卷积神经网络模型进行训练和验证。使用 LANCE,我们可以准确地将活细胞、凋亡细胞和坏死细胞分类,准确率高达 96.3±0.5%。更重要的是,这种无损的无标记 LANCE 方法可以跟踪细胞死亡过程的时间动态,从而增强对分子水平上微妙细胞死亡调控的理解。因此,LANCE 是一种快速、低成本、无损的无标记方法,可以区分细胞状态,可应用于细胞死亡研究以及许多其他生物医学应用。

相似文献

1
LANCE: a Label-Free Live Apoptotic and Necrotic Cell Explorer Using Convolutional Neural Network Image Analysis.
Anal Chem. 2022 Nov 1;94(43):14827-14834. doi: 10.1021/acs.analchem.2c00878. Epub 2022 Oct 17.
2
Label-Free Estimation of Therapeutic Efficacy on 3D Cancer Spheres Using Convolutional Neural Network Image Analysis.
Anal Chem. 2019 Nov 5;91(21):14093-14100. doi: 10.1021/acs.analchem.9b03896. Epub 2019 Oct 24.
3
Label-Free and In Situ Identification of Cells via Combinational Machine Learning Models.
Small Methods. 2022 Feb;6(2):e2101405. doi: 10.1002/smtd.202101405. Epub 2021 Dec 26.
4
LIVECell-A large-scale dataset for label-free live cell segmentation.
Nat Methods. 2021 Sep;18(9):1038-1045. doi: 10.1038/s41592-021-01249-6. Epub 2021 Aug 30.
5
A novel biomedical image indexing and retrieval system via deep preference learning.
Comput Methods Programs Biomed. 2018 May;158:53-69. doi: 10.1016/j.cmpb.2018.02.003. Epub 2018 Feb 6.
6
MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
Magn Reson Med. 2019 Dec;82(6):2133-2145. doi: 10.1002/mrm.27894. Epub 2019 Aug 2.
7
Classification of cell morphology with quantitative phase microscopy and machine learning.
Opt Express. 2020 Aug 3;28(16):23916-23927. doi: 10.1364/OE.397029.
9
Deep Learning-Based Single-Cell Optical Image Studies.
Cytometry A. 2020 Mar;97(3):226-240. doi: 10.1002/cyto.a.23973. Epub 2020 Jan 25.

引用本文的文献

1
High-Throughput Empirical and Virtual Screening To Discover Novel Inhibitors of Polyploid Giant Cancer Cells in Breast Cancer.
Anal Chem. 2025 Mar 18;97(10):5498-5506. doi: 10.1021/acs.analchem.4c05138. Epub 2025 Mar 4.
3
Label-free spatiotemporal decoding of single-cell fate via acoustic driven 3D tomography.
Mater Today Bio. 2024 Aug 13;28:101201. doi: 10.1016/j.mtbio.2024.101201. eCollection 2024 Oct.
5
Deep learning unlocks label-free viability assessment of cancer spheroids in microfluidics.
Lab Chip. 2024 Jun 11;24(12):3169-3182. doi: 10.1039/d4lc00197d.
6
Stain-Free Approach to Determine and Monitor Cell Heath Using Supervised and Unsupervised Image-Based Deep Learning.
J Pharm Sci. 2024 Aug;113(8):2114-2127. doi: 10.1016/j.xphs.2024.05.001. Epub 2024 May 6.

本文引用的文献

1
celldeath: A tool for detection of cell death in transmitted light microscopy images by deep learning-based visual recognition.
PLoS One. 2021 Jun 24;16(6):e0253666. doi: 10.1371/journal.pone.0253666. eCollection 2021.
2
Gasdermin E suppresses tumour growth by activating anti-tumour immunity.
Nature. 2020 Mar;579(7799):415-420. doi: 10.1038/s41586-020-2071-9. Epub 2020 Mar 11.
3
AI-powered transmitted light microscopy for functional analysis of live cells.
Sci Rep. 2019 Dec 5;9(1):18428. doi: 10.1038/s41598-019-54961-x.
4
Label-Free Estimation of Therapeutic Efficacy on 3D Cancer Spheres Using Convolutional Neural Network Image Analysis.
Anal Chem. 2019 Nov 5;91(21):14093-14100. doi: 10.1021/acs.analchem.9b03896. Epub 2019 Oct 24.
6
The Coming Decade of Cell Death Research: Five Riddles.
Cell. 2019 May 16;177(5):1094-1107. doi: 10.1016/j.cell.2019.04.024.
9
Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.
Cell Death Differ. 2018 Mar;25(3):486-541. doi: 10.1038/s41418-017-0012-4. Epub 2018 Jan 23.
10
Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin.
Nature. 2017 Jul 6;547(7661):99-103. doi: 10.1038/nature22393. Epub 2017 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验