通过声学驱动的三维断层扫描对单细胞命运进行无标记时空解码。

Label-free spatiotemporal decoding of single-cell fate via acoustic driven 3D tomography.

作者信息

Wang Yuxin, Zhou Shizheng, Quan Yue, Liu Yu, Zhou Bingpu, Chen Xiuping, Ma Zhichao, Zhou Yinning

机构信息

Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China.

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China.

出版信息

Mater Today Bio. 2024 Aug 13;28:101201. doi: 10.1016/j.mtbio.2024.101201. eCollection 2024 Oct.

Abstract

Label-free three-dimensional imaging plays a crucial role in unraveling the complexities of cellular functions and interactions in biomedical research. Conventional single-cell optical tomography techniques offer affordability and the convenience of bypassing laborious cell labelling protocols. However, these methods are encumbered by restricted illumination scanning ranges on abaxial plane, resulting in the loss of intricate cellular imaging details. The ability to fully control cellular rotation across all angles has emerged as an optimal solution for capturing comprehensive structural details of cells. Here, we introduce a label-free, cost-effective, and readily fabricated contactless acoustic-induced vibration system, specifically designed to enable multi-degree-of-freedom rotation of cells, ultimately attaining stable in-situ rotation. Furthermore, by integrating this system with advanced deep learning technologies, we perform 3D reconstruction and morphological analysis on diverse cell types, thus validating groups of high-precision cell identification. Notably, long-term observation of cells reveals distinct features associated with drug-induced apoptosis in both cancerous and normal cells populations. This methodology, based on deep learning-enabled cell 3D reconstruction, charts a novel trajectory for groups of real-time cellular visualization, offering promising advancements in the realms of drug screening and post-single-cell analysis, thereby addressing potential clinical requisites.

摘要

无标记三维成像在揭示生物医学研究中细胞功能和相互作用的复杂性方面发挥着关键作用。传统的单细胞光学断层扫描技术价格实惠,且无需繁琐的细胞标记方案。然而,这些方法受到轴向平面上受限的照明扫描范围的限制,导致复杂的细胞成像细节丢失。能够全方位控制细胞旋转已成为捕获细胞全面结构细节的最佳解决方案。在此,我们介绍一种无标记、经济高效且易于制造的非接触式声致振动系统,专门设计用于实现细胞的多自由度旋转,最终实现稳定的原位旋转。此外,通过将该系统与先进的深度学习技术相结合,我们对多种细胞类型进行三维重建和形态分析,从而验证高精度细胞识别组。值得注意的是,对细胞的长期观察揭示了癌细胞和正常细胞群体中与药物诱导凋亡相关的不同特征。这种基于深度学习的细胞三维重建方法为实时细胞可视化组开辟了一条新途径,在药物筛选和单细胞后分析领域提供了有前景的进展,从而满足潜在的临床需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41a8/11364901/1ca82fb12cdb/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索