MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
Small Methods. 2022 Feb;6(2):e2101405. doi: 10.1002/smtd.202101405. Epub 2021 Dec 26.
Cell identification and counting in living and coculture systems are crucial in cell interaction studies, but current methods primarily rely on complicated and time-consuming staining techniques. Here, a label-free method to precisely recognize, identify, and instantly count cells in situ in coculture systems via combinational machine learning models s presented. A convolutional neural network (CNN) model is first used to generate virtual images of cell nuclei based on unlabeled phase-contrast images. Coordinates of all the cells are then returned according to the virtual nucleus images using two clustering algorithms. Finally, phase-contrast images of single cells are cropped based on the coordinates and sent into another CNN model for cell-type identification. This combinational approach is highly automatic and efficient, which requires few to no manual annotations of images in the training phase. It shows practical performance in different cell culture conditions including cell ratios, densities, and substrate materials, having great potential in real-time cell tracking and analyzing.
在细胞相互作用研究中,对活细胞和共培养体系中的细胞进行鉴定和计数至关重要,但目前的方法主要依赖于复杂且耗时的染色技术。在这里,提出了一种无标记的方法,通过组合机器学习模型,可以精确识别、鉴定和即时计数共培养体系中的细胞。首先,使用卷积神经网络 (CNN) 模型根据未标记的相差图像生成细胞核的虚拟图像。然后,根据虚拟核图像使用两种聚类算法返回所有细胞的坐标。最后,根据坐标裁剪单细胞的相差图像,并将其送入另一个 CNN 模型进行细胞类型识别。这种组合方法高度自动化且高效,在训练阶段几乎不需要手动注释图像。它在不同的细胞培养条件下表现出实用的性能,包括细胞比例、密度和基质材料,在实时细胞跟踪和分析方面具有很大的潜力。