Suppr超能文献

基于 BART 的深度深度学习。

Deep, deep learning with BART.

机构信息

Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany.

Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria.

出版信息

Magn Reson Med. 2023 Feb;89(2):678-693. doi: 10.1002/mrm.29485. Epub 2022 Oct 18.

Abstract

PURPOSE

To develop a deep-learning-based image reconstruction framework for reproducible research in MRI.

METHODS

The BART toolbox offers a rich set of implementations of calibration and reconstruction algorithms for parallel imaging and compressed sensing. In this work, BART was extended by a nonlinear operator framework that provides automatic differentiation to allow computation of gradients. Existing MRI-specific operators of BART, such as the nonuniform fast Fourier transform, are directly integrated into this framework and are complemented by common building blocks used in neural networks. To evaluate the use of the framework for advanced deep-learning-based reconstruction, two state-of-the-art unrolled reconstruction networks, namely the Variational Network and MoDL, were implemented.

RESULTS

State-of-the-art deep image-reconstruction networks can be constructed and trained using BART's gradient-based optimization algorithms. The BART implementation achieves a similar performance in terms of training time and reconstruction quality compared to the original implementations based on TensorFlow.

CONCLUSION

By integrating nonlinear operators and neural networks into BART, we provide a general framework for deep-learning-based reconstruction in MRI.

摘要

目的

开发基于深度学习的 MRI 可重复性研究图像重建框架。

方法

BART 工具箱提供了丰富的并行成像和压缩感知校准和重建算法实现。在这项工作中,BART 通过一个非线性算子框架得到扩展,该框架提供自动微分以允许计算梯度。BART 的现有 MRI 特定算子,如非均匀快速傅里叶变换,直接集成到该框架中,并由神经网络中使用的常见构建块补充。为了评估该框架在先进的基于深度学习的重建中的使用,实现了两个最先进的展开式重建网络,即变分网络和 MoDL。

结果

使用 BART 的基于梯度的优化算法可以构建和训练最先进的深度图像重建网络。与基于 TensorFlow 的原始实现相比,BART 实现的训练时间和重建质量具有相似的性能。

结论

通过将非线性算子和神经网络集成到 BART 中,我们为 MRI 中的基于深度学习的重建提供了一个通用框架。

相似文献

1
Deep, deep learning with BART.
Magn Reson Med. 2023 Feb;89(2):678-693. doi: 10.1002/mrm.29485. Epub 2022 Oct 18.
2
Technical Note: PYRO-NN: Python reconstruction operators in neural networks.
Med Phys. 2019 Nov;46(11):5110-5115. doi: 10.1002/mp.13753. Epub 2019 Aug 27.
3
Deep supervised dictionary learning by algorithm unrolling-Application to fast 2D dynamic MR image reconstruction.
Med Phys. 2023 May;50(5):2939-2960. doi: 10.1002/mp.16182. Epub 2023 Jan 17.
5
Deep compressed sensing MRI via a gradient-enhanced fusion model.
Med Phys. 2023 Mar;50(3):1390-1405. doi: 10.1002/mp.16164. Epub 2023 Feb 6.
6
An unrolled neural network for accelerated dynamic MRI based on second-order half-quadratic splitting model.
Magn Reson Imaging. 2024 Nov;113:110218. doi: 10.1016/j.mri.2024.110218. Epub 2024 Jul 26.
7
SpiNet: A deep neural network for Schatten p-norm regularized medical image reconstruction.
Med Phys. 2021 May;48(5):2214-2229. doi: 10.1002/mp.14744. Epub 2021 Mar 22.
8
Accelerating CEST imaging using a model-based deep neural network with synthetic training data.
Magn Reson Med. 2024 Feb;91(2):583-599. doi: 10.1002/mrm.29889. Epub 2023 Oct 22.
10
An optimal control framework for joint-channel parallel MRI reconstruction without coil sensitivities.
Magn Reson Imaging. 2022 Jun;89:1-11. doi: 10.1016/j.mri.2022.01.011. Epub 2022 Feb 3.

引用本文的文献

1
Generative priors for MRI reconstruction trained from magnitude-only images using phase augmentation.
Philos Trans A Math Phys Eng Sci. 2025 Jun 19;383(2299):20240323. doi: 10.1098/rsta.2024.0323.
2
Rosette Trajectory MRI Reconstruction with Vision Transformers.
Tomography. 2025 Apr 1;11(4):41. doi: 10.3390/tomography11040041.
4
Self-supervised learning for improved calibrationless radial MRI with NLINV-Net.
Magn Reson Med. 2024 Dec;92(6):2447-2463. doi: 10.1002/mrm.30234. Epub 2024 Jul 30.
5
Deep learning for accelerated and robust MRI reconstruction.
MAGMA. 2024 Jul;37(3):335-368. doi: 10.1007/s10334-024-01173-8. Epub 2024 Jul 23.

本文引用的文献

1
Accelerated respiratory-resolved 4D-MRI with separable spatio-temporal neural networks.
Med Phys. 2023 Sep;50(9):5331-5342. doi: 10.1002/mp.16643. Epub 2023 Aug 1.
2
NC-PDNet: A Density-Compensated Unrolled Network for 2D and 3D Non-Cartesian MRI Reconstruction.
IEEE Trans Med Imaging. 2022 Jul;41(7):1625-1638. doi: 10.1109/TMI.2022.3144619. Epub 2022 Jun 30.
3
Deep Learning Reconstruction Enables Highly Accelerated Biparametric MR Imaging of the Prostate.
J Magn Reson Imaging. 2022 Jul;56(1):184-195. doi: 10.1002/jmri.28024. Epub 2021 Dec 7.
5
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017;2017:240-248. doi: 10.1007/978-3-319-67558-9_28. Epub 2017 Sep 9.
6
Physics-based reconstruction methods for magnetic resonance imaging.
Philos Trans A Math Phys Eng Sci. 2021 Jun 28;379(2200):20200196. doi: 10.1098/rsta.2020.0196. Epub 2021 May 10.
7
Analysis of deep complex-valued convolutional neural networks for MRI reconstruction and phase-focused applications.
Magn Reson Med. 2021 Aug;86(2):1093-1109. doi: 10.1002/mrm.28733. Epub 2021 Mar 16.
10
Accelerating cardiac cine MRI using a deep learning-based ESPIRiT reconstruction.
Magn Reson Med. 2021 Jan;85(1):152-167. doi: 10.1002/mrm.28420. Epub 2020 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验