Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, People's Republic of China.
MR Collaboration, Siemens Healthcare Ltd., Shanghai, People's Republic of China.
Magn Reson Med. 2024 Feb;91(2):583-599. doi: 10.1002/mrm.29889. Epub 2023 Oct 22.
To develop a model-based deep neural network for high-quality image reconstruction of undersampled multi-coil CEST data.
Inspired by the variational network (VN), the CEST image reconstruction equation is unrolled into a deep neural network (CEST-VN) with a k-space data-sharing block that takes advantage of the inherent redundancy in adjacent CEST frames and 3D spatial-frequential convolution kernels that exploit correlations in the x-ω domain. Additionally, a new pipeline based on multiple-pool Bloch-McConnell simulations is devised to synthesize multi-coil CEST data from publicly available anatomical MRI data. The proposed network is trained on simulated data with a CEST-specific loss function that jointly measures the structural and CEST contrast. The performance of CEST-VN was evaluated on four healthy volunteers and five brain tumor patients using retrospectively or prospectively undersampled data with various acceleration factors, and then compared with other conventional and state-of-the-art reconstruction methods.
The proposed CEST-VN method generated high-quality CEST source images and amide proton transfer-weighted maps in healthy and brain tumor subjects, consistently outperforming GRAPPA, blind compressed sensing, and the original VN. With the acceleration factors increasing from 3 to 6, CEST-VN with the same hyperparameters yielded similar and accurate reconstruction without apparent loss of details or increase of artifacts. The ablation studies confirmed the effectiveness of the CEST-specific loss function and data-sharing block used.
The proposed CEST-VN method can offer high-quality CEST source images and amide proton transfer-weighted maps from highly undersampled multi-coil data by integrating the deep learning prior and multi-coil sensitivity encoding model.
开发一种基于模型的深度神经网络,用于对欠采样多通道 CEST 数据进行高质量图像重建。
受变分网络(VN)的启发,将 CEST 图像重建方程展开为具有 k 空间数据共享块的深度神经网络(CEST-VN),该块利用相邻 CEST 帧的固有冗余性和 3D 空间-频率卷积核来利用 x-ω 域中的相关性。此外,还设计了一种基于多个池化 Bloch-McConnell 模拟的新流水线,从公开的解剖学 MRI 数据中合成多通道 CEST 数据。该网络在具有 CEST 特定损失函数的模拟数据上进行训练,该函数联合测量结构和 CEST 对比度。使用各种加速因子的回顾性或前瞻性欠采样数据对 CEST-VN 的性能进行了评估,并与其他传统和最先进的重建方法进行了比较。
所提出的 CEST-VN 方法在健康和脑肿瘤受试者中生成了高质量的 CEST 源图像和酰胺质子转移加权图,一致优于 GRAPPA、盲压缩感知和原始 VN。随着加速因子从 3 增加到 6,具有相同超参数的 CEST-VN 产生了相似且准确的重建,没有明显的细节损失或伪影增加。消融研究证实了 CEST 特定损失函数和数据共享块的有效性。
所提出的 CEST-VN 方法可以通过整合深度学习先验和多通道灵敏度编码模型,从高度欠采样的多通道数据中提供高质量的 CEST 源图像和酰胺质子转移加权图。