Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA.
Microbiol Spectr. 2022 Dec 21;10(6):e0261522. doi: 10.1128/spectrum.02615-22. Epub 2022 Oct 18.
Microbial interactions are often mediated by diffusible small molecules, including secondary metabolites, that play roles in cell-to-cell signaling and inhibition of competitors. Biofilms are often "hot spots" for high concentrations of bacteria and their secondary metabolites, which make them ideal systems for the study of small-molecule contributions to microbial interactions. Here, we use a five-member synthetic community consisting of representatives to investigate the role of secondary metabolites on microbial biofilm dynamics. One synthetic community member, strain Y4I, possesses two acylated homoserine lactone (AHL)-based cell-to-cell signaling systems ( and ) as well as a nonribosomal peptide synthase gene () cluster that encodes the antimicrobial indigoidine. Through serial substitution of Y4I with mutants deficient in single signaling molecule pathways, the contribution of these small-molecule systems could be assessed. As secondary metabolite production is dependent upon central metabolites, the influence of growth substrate (i.e., complex medium versus defined medium with a single carbon substrate) on these dynamics was also considered. Depending on the Y4I mutant genotype included, community dynamics ranged from competitive to cooperative. The observed interactions were mostly competitive in nature. However, the community harboring a Y4I variant that was both impaired in quorum sensing (QS) pathways and unable to produce indigoidine ( variant) shifted toward more cooperative interactions over time. These cooperative interactions were enhanced in the defined growth medium. The results presented provide a framework for deciphering complex, small-molecule-mediated interactions that have broad application to microbial biology. Microbial biofilms play critical roles in marine ecosystems and are hot spots for microbial interactions that play a role in the development and function of these communities. are an abundant and active family of marine heterotrophic bacteria forming close associations with phytoplankton and carrying out key transformations in biogeochemical cycles. Group members are aggressive primary colonizers of surfaces, where they set the stage for the development of multispecies biofilm communities. Few studies have examined the impact of secondary metabolites, such as cell-to-cell signaling and antimicrobial production, on marine microbial biofilm community structure. Here, we assessed the impact of secondary metabolites on microbial interactions using a synthetic, five-member community by measuring species composition and biomass production during biofilm growth. We present evidence that secondary metabolites influence social behaviors within these multispecies microbial biofilms, thereby improving understanding of bacterial secondary metabolite production influence on social behaviors within marine microbial biofilm communities.
微生物相互作用通常由可扩散的小分子介导,包括次级代谢产物,它们在细胞间信号传递和抑制竞争者方面发挥作用。生物膜通常是细菌及其次级代谢产物高浓度的“热点”,这使它们成为研究小分子对微生物相互作用贡献的理想系统。在这里,我们使用一个由五个成员组成的合成群落来研究次级代谢产物对微生物生物膜动力学的作用。一个合成群落成员,Y4I 菌株,拥有两个酰化高丝氨酸内酯 (AHL) 为基础的细胞间信号系统(Las 和 Rhl)以及一个非核糖体肽合成酶基因 () 簇,编码抗菌靛蓝。通过用单个信号分子途径缺陷突变体替代 Y4I,可以评估这些小分子系统的贡献。由于次级代谢产物的产生依赖于中心代谢物,因此还考虑了生长基质(即复杂培养基与单一碳源培养基)对这些动力学的影响。根据包含的 Y4I 突变体基因型,群落动力学范围从竞争到合作。观察到的相互作用主要是竞争性质的。然而,当群落中包含一个既在群体感应 (QS) 途径中受损又不能产生靛蓝的 Y4I 变体(变体)时,随着时间的推移,它会朝着更合作的相互作用转变。这些合作相互作用在限定生长培养基中得到增强。所提出的结果为破译复杂的、由小分子介导的相互作用提供了一个框架,这些相互作用在微生物生物学中有广泛的应用。微生物生物膜在海洋生态系统中起着至关重要的作用,是微生物相互作用的热点,这些相互作用在这些群落的发展和功能中起着关键作用。是一个丰富而活跃的海洋异养细菌家族,与浮游植物形成密切联系,并在生物地球化学循环中进行关键转化。该组的成员是表面的积极初级殖民者,在那里它们为多物种生物膜群落的发展奠定了基础。很少有研究检查次级代谢产物(如细胞间信号传递和抗菌产物)对海洋微生物生物膜群落结构的影响。在这里,我们通过测量生物膜生长过程中的物种组成和生物量生产,使用一个由五个成员组成的合成 群落来评估次级代谢产物对微生物相互作用的影响。我们提供的证据表明,次级代谢产物会影响这些多物种微生物生物膜中的社会行为,从而提高对海洋微生物生物膜群落中细菌次级代谢产物产生对社会行为影响的理解。
Microbiol Spectr. 2022-12-21
Front Cell Infect Microbiol. 2021
Ann Rev Mar Sci. 2016-10-21
Appl Microbiol Biotechnol. 2022-10
Int J Mol Sci. 2021-8-11
Org Biomol Chem. 2021-1-6
Microb Biotechnol. 2020-9
Front Plant Sci. 2020-8-27
Nat Ecol Evol. 2020-2-10
Front Microbiol. 2019-1-9
Appl Environ Microbiol. 2018-11-15