Rieusset Laura, Rey Marjolaine, Muller Daniel, Vacheron Jordan, Gerin Florence, Dubost Audrey, Comte Gilles, Prigent-Combaret Claire
CNRS UMR-5557, INRAe UMR-1418, Ecologie Microbienne, VetAgroSup, Université de Lyon, Université Claude Bernard Lyon1, 43 Boulevard du 11 novembre 1918, Villeurbanne, 69622, France.
Department of Fundamental Microbiology, University of Lausanne, Lausanne, 1015, Switzerland.
Microb Biotechnol. 2020 Sep;13(5):1562-1580. doi: 10.1111/1751-7915.13598.
Plant rhizosphere soil houses complex microbial communities in which microorganisms are often involved in intraspecies as well as interspecies and inter-kingdom signalling networks. Some members of these networks can improve plant health thanks to an important diversity of bioactive secondary metabolites. In this competitive environment, the ability to form biofilms may provide major advantages to microorganisms. With the aim of highlighting the impact of bacterial lifestyle on secondary metabolites production, we performed a metabolomic analysis on four fluorescent Pseudomonas strains cultivated in planktonic and biofilm colony conditions. The untargeted metabolomic analysis led to the detection of hundreds of secondary metabolites in culture extracts. Comparison between biofilm and planktonic conditions showed that bacterial lifestyle is a key factor influencing Pseudomonas metabolome. More than 50% of the detected metabolites were differentially produced according to planktonic or biofilm lifestyles, with the four Pseudomonas strains overproducing several secondary metabolites in biofilm conditions. In parallel, metabolomic analysis associated with genomic prediction and a molecular networking approach enabled us to evaluate the impact of bacterial lifestyle on chemically identified secondary metabolites, more precisely involved in microbial interactions and plant-growth promotion. Notably, this work highlights the major effect of biofilm lifestyle on acyl-homoserine lactone and phenazine production in P. chlororaphis strains.
植物根际土壤中存在复杂的微生物群落,其中微生物经常参与种内以及种间和跨王国的信号网络。这些网络的一些成员由于生物活性次生代谢产物的重要多样性而可以改善植物健康。在这种竞争环境中,形成生物膜的能力可能为微生物提供主要优势。为了突出细菌生活方式对次生代谢产物产生的影响,我们对在浮游和生物膜菌落条件下培养的四种荧光假单胞菌菌株进行了代谢组学分析。非靶向代谢组学分析导致在培养提取物中检测到数百种次生代谢产物。生物膜和浮游条件之间的比较表明,细菌生活方式是影响假单胞菌代谢组的关键因素。根据浮游或生物膜生活方式,超过50%的检测到的代谢产物产生差异,四种假单胞菌菌株在生物膜条件下过量产生几种次生代谢产物。同时,与基因组预测和分子网络方法相关的代谢组学分析使我们能够评估细菌生活方式对化学鉴定的次生代谢产物的影响,这些次生代谢产物更精确地参与微生物相互作用和植物生长促进。值得注意的是,这项工作突出了生物膜生活方式对绿针假单胞菌菌株中酰基高丝氨酸内酯和吩嗪产生的主要影响。