Université Clermont Auvergne, INRAE, MEDiS, 63000 Clermont-Ferrand, France.
Biotecnología y Genética S.A.S - Línea de enfermedades infecciosas y microbiología molecular, Colombia.
Pathog Dis. 2022 Oct 29;80(1). doi: 10.1093/femspd/ftac039.
Phages are viruses that infect bacteria, relying on their genetic machinery to replicate. To survive the constant attack of phages, bacteria have developed diverse defense strategies to act against them. Nevertheless, phages rapidly co-evolve to overcome these barriers, resulting in a constant, and often surprising, molecular arms race. Thus, some phages have evolved protein inhibitors known as anti-CRISPRs (∼50-150 amino acids), which antagonize the bacterial CRISPR-Cas immune response. To date, around 45 anti-CRISPRs proteins with different mechanisms and structures have been discovered against the CRISPR-Cas type I and type II present in important animal and human pathogens such as Escherichia, Morganella, Klebsiella, Enterococcus, Pseudomonas, Staphylococcus, and Salmonella. Considering the alarming growth of antibiotic resistance, phage therapy, either alone or in combination with antibiotics, appears to be a promising alternative for the treatment of many bacterial infections. In this review, we illustrated the biological and clinical aspects of using phage therapy; furthermore, the CRISPR-Cas mechanism, and the interesting activity of anti-CRISPR proteins as a possible weapon to combat bacteria.
噬菌体是感染细菌的病毒,依赖于它们的遗传机制进行复制。为了在噬菌体的持续攻击中存活,细菌已经发展出了多样化的防御策略来对抗它们。然而,噬菌体迅速共同进化以克服这些障碍,导致了一场持续的、经常令人惊讶的分子军备竞赛。因此,一些噬菌体进化出了被称为抗 CRISPR 蛋白(∼50-150 个氨基酸)的蛋白质抑制剂,它们拮抗细菌的 CRISPR-Cas 免疫反应。迄今为止,已经发现了大约 45 种针对 CRISPR-Cas Ⅰ型和Ⅱ型的抗 CRISPR 蛋白,这些蛋白具有不同的机制和结构,存在于重要的动物和人类病原体中,如大肠杆菌、摩根氏菌、克雷伯氏菌、肠球菌、假单胞菌、葡萄球菌和沙门氏菌。考虑到抗生素耐药性的惊人增长,噬菌体治疗,无论是单独使用还是与抗生素联合使用,似乎都是治疗许多细菌感染的一种有前途的替代方法。在这篇综述中,我们阐述了使用噬菌体治疗的生物学和临床方面;此外,还阐述了 CRISPR-Cas 机制以及抗 CRISPR 蛋白作为对抗细菌的一种可能武器的有趣活性。