Suppr超能文献

抗 CRISPR 系统:CRISPR-Cas 抑制剂的感染生物学。

Anti-CRISPRs go viral: The infection biology of CRISPR-Cas inhibitors.

机构信息

Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94403, USA.

Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94403, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94403, USA; Innovative Genomics Institute, Berkeley, CA, USA.

出版信息

Cell Host Microbe. 2021 May 12;29(5):704-714. doi: 10.1016/j.chom.2020.12.007. Epub 2021 Jan 13.

Abstract

Bacteriophages encode diverse anti-CRISPR (Acr) proteins that inhibit CRISPR-Cas immunity during infection of their bacterial hosts. Although detailed mechanisms have been characterized for multiple Acr proteins, an understanding of their role in phage infection biology is just emerging. Here, we review recent work in this area and propose a framework of "phage autonomy" to evaluate CRISPR-immune evasion strategies. During phage infection, Acr proteins are deployed by a tightly regulated "fast on-fast off" transcriptional burst, which is necessary, but insufficient, for CRISPR-Cas inactivation. Instead of a single phage shutting down CRISPR-Cas immunity, a community of acr-carrying phages cooperate to suppress bacterial immunity, displaying low phage autonomy. Enzymatic Acr proteins with novel mechanisms have been recently revealed and are predicted to enhance phage autonomy, while phage DNA protective measures offer the highest phage autonomy observed. These varied Acr mechanisms and strengths also have unexpected impacts on the bacterial populations and competing phages.

摘要

噬菌体编码多种抗 CRISPR(Acr)蛋白,在感染其细菌宿主时抑制 CRISPR-Cas 免疫。尽管已经对多种 Acr 蛋白的详细机制进行了描述,但人们对它们在噬菌体感染生物学中的作用的理解才刚刚开始。在这里,我们回顾了该领域的最新工作,并提出了一个“噬菌体自主性”框架来评估 CRISPR 免疫逃逸策略。在噬菌体感染过程中,Acr 蛋白通过严格调控的“快速开启-快速关闭”转录爆发进行部署,这对于 CRISPR-Cas 的失活是必要的,但还不够。不是单个噬菌体关闭 CRISPR-Cas 免疫,而是一群携带 acr 的噬菌体合作抑制细菌免疫,表现出低噬菌体自主性。最近发现了具有新颖机制的酶促 Acr 蛋白,预计它们将增强噬菌体自主性,而噬菌体 DNA 保护措施则提供了迄今为止观察到的最高噬菌体自主性。这些不同的 Acr 机制和强度也对细菌种群和竞争噬菌体产生了意想不到的影响。

相似文献

1
Anti-CRISPRs go viral: The infection biology of CRISPR-Cas inhibitors.抗 CRISPR 系统:CRISPR-Cas 抑制剂的感染生物学。
Cell Host Microbe. 2021 May 12;29(5):704-714. doi: 10.1016/j.chom.2020.12.007. Epub 2021 Jan 13.
2
Bacteriophage Cooperation Suppresses CRISPR-Cas3 and Cas9 Immunity.噬菌体合作抑制 CRISPR-Cas3 和 Cas9 免疫。
Cell. 2018 Aug 9;174(4):917-925.e10. doi: 10.1016/j.cell.2018.06.013. Epub 2018 Jul 19.
4
Exploitation of the Cooperative Behaviors of Anti-CRISPR Phages.利用抗 CRISPR 噬菌体的合作行为。
Cell Host Microbe. 2020 Feb 12;27(2):189-198.e6. doi: 10.1016/j.chom.2019.12.004. Epub 2019 Dec 31.
6
Anti-CRISPR Phages Cooperate to Overcome CRISPR-Cas Immunity.抗 CRISPR 噬菌体协同作用以克服 CRISPR-Cas 免疫。
Cell. 2018 Aug 9;174(4):908-916.e12. doi: 10.1016/j.cell.2018.05.058. Epub 2018 Jul 19.
7
Phage-Encoded Anti-CRISPR Defenses.噬菌体编码的抗 CRISPR 防御系统。
Annu Rev Genet. 2018 Nov 23;52:445-464. doi: 10.1146/annurev-genet-120417-031321. Epub 2018 Sep 12.
8
Ecology and evolution of phages encoding anti-CRISPR proteins.噬菌体编码抗 CRISPR 蛋白的生态与进化。
J Mol Biol. 2023 Apr 1;435(7):167974. doi: 10.1016/j.jmb.2023.167974. Epub 2023 Jan 20.
9
The Discovery, Mechanisms, and Evolutionary Impact of Anti-CRISPRs.抗 CRISPRs 的发现、机制和进化影响。
Annu Rev Virol. 2017 Sep 29;4(1):37-59. doi: 10.1146/annurev-virology-101416-041616. Epub 2017 Jul 27.

引用本文的文献

2
In silico evolution of globular protein folds from random sequences.从随机序列进行球状蛋白质折叠的计算机模拟进化
Proc Natl Acad Sci U S A. 2025 Jul 8;122(27):e2509015122. doi: 10.1073/pnas.2509015122. Epub 2025 Jun 30.
5
Nano-Polymers as Cas9 Inhibitors.纳米聚合物作为Cas9抑制剂
Polymers (Basel). 2025 Feb 5;17(3):417. doi: 10.3390/polym17030417.
6
Bacteriophages: A Challenge for Antimicrobial Therapy.噬菌体:抗菌治疗面临的一项挑战
Microorganisms. 2025 Jan 7;13(1):100. doi: 10.3390/microorganisms13010100.

本文引用的文献

1
Structures and Strategies of Anti-CRISPR-Mediated Immune Suppression.抗 CRISPR 介导免疫抑制的结构与策略。
Annu Rev Microbiol. 2020 Sep 8;74:21-37. doi: 10.1146/annurev-micro-020518-120107. Epub 2020 Jun 5.
3
Critical Anti-CRISPR Locus Repression by a Bi-functional Cas9 Inhibitor.关键抗 CRISPR 基因座由双功能 Cas9 抑制剂抑制。
Cell Host Microbe. 2020 Jul 8;28(1):23-30.e5. doi: 10.1016/j.chom.2020.04.002. Epub 2020 Apr 22.
4
Listeria Phages Induce Cas9 Degradation to Protect Lysogenic Genomes.李斯特菌噬菌体诱导 Cas9 降解以保护溶原基因组。
Cell Host Microbe. 2020 Jul 8;28(1):31-40.e9. doi: 10.1016/j.chom.2020.04.001. Epub 2020 Apr 22.
5
Broad-spectrum anti-CRISPR proteins facilitate horizontal gene transfer.广谱抗 CRISPR 蛋白促进水平基因转移。
Nat Microbiol. 2020 Apr;5(4):620-629. doi: 10.1038/s41564-020-0692-2. Epub 2020 Mar 26.
8
Anti-CRISPRs: Protein Inhibitors of CRISPR-Cas Systems.抗 CRISPR 蛋白:CRISPR-Cas 系统的蛋白抑制剂。
Annu Rev Biochem. 2020 Jun 20;89:309-332. doi: 10.1146/annurev-biochem-011420-111224. Epub 2020 Mar 18.
9
Potent CRISPR-Cas9 inhibitors from genomes.基因组中强效的 CRISPR-Cas9 抑制剂。
Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6531-6539. doi: 10.1073/pnas.1917668117. Epub 2020 Mar 10.
10
CRISPR-Cas Systems and the Paradox of Self-Targeting Spacers.CRISPR-Cas系统与自我靶向间隔序列的悖论
Front Microbiol. 2020 Jan 22;10:3078. doi: 10.3389/fmicb.2019.03078. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验