Suppr超能文献

预测炎症性肠病患者的住院死亡率:一种机器学习方法。

Predicting inpatient mortality in patients with inflammatory bowel disease: A machine learning approach.

机构信息

New York Presbyterian Hospital/Weill-Cornell Medical College - Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medicine, New York, New York, USA.

Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, Arizona, USA.

出版信息

J Gastroenterol Hepatol. 2023 Feb;38(2):241-250. doi: 10.1111/jgh.16029. Epub 2022 Nov 18.

Abstract

BACKGROUND AND AIM

Data are lacking on predicting inpatient mortality (IM) in patients admitted for inflammatory bowel disease (IBD). IM is a critical outcome; however, difficulty in its prediction exists due to infrequent occurrence. We assessed IM predictors and developed a predictive model for IM using machine-learning (ML).

METHODS

Using the National Inpatient Sample (NIS) database (2005-2017), we extracted adults admitted for IBD. After ML-guided predictor selection, we trained and internally validated multiple algorithms, targeting minimum sensitivity and positive likelihood ratio (+LR) ≥ 80% and ≥ 3, respectively. Diagnostic odds ratio (DOR) compared algorithm performance. The best performing algorithm was additionally trained and validated for an IBD-related surgery sub-cohort. External validation was done using NIS 2018.

RESULTS

In 398 426 adult IBD admissions, IM was 0.32% overall, and 0.87% among the surgical cohort (n = 40 784). Increasing age, ulcerative colitis, IBD-related surgery, pneumonia, chronic lung disease, acute kidney injury, malnutrition, frailty, heart failure, blood transfusion, sepsis/septic shock and thromboembolism were associated with increased IM. The QLattice algorithm, provided the highest performance model (+LR: 3.2, 95% CI 3.0-3.3; area-under-curve [AUC]:0.87, 85% sensitivity, 73% specificity), distinguishing IM patients by 15.6-fold when comparing high to low-risk patients. The surgical cohort model (+LR: 8.5, AUC: 0.94, 85% sensitivity, 90% specificity), distinguished IM patients by 49-fold. Both models performed excellently in external validation. An online calculator (https://clinicalc.ai/im-ibd/) was developed allowing bedside model predictions.

CONCLUSIONS

An online prediction-model calculator captured > 80% IM cases during IBD-related admissions, with high discriminatory effectiveness. This allows for risk stratification and provides a basis for assessing interventions to reduce mortality in high-risk patients.

摘要

背景与目的

目前缺乏预测因炎症性肠病(IBD)住院患者住院死亡率(IM)的相关数据。IM 是一个关键的预后指标,但由于其发生率较低,因此预测难度较大。我们评估了 IM 的预测因子,并使用机器学习(ML)为 IM 开发了一个预测模型。

方法

使用国家住院患者样本(NIS)数据库(2005-2017 年),我们提取了因 IBD 住院的成年人数据。在 ML 引导的预测因子选择后,我们针对最小灵敏度和阳性似然比(+LR)≥80%和≥3,分别训练和内部验证了多种算法。诊断比值比(DOR)比较了算法性能。性能最佳的算法还针对 IBD 相关手术亚组进行了训练和验证。使用 NIS 2018 进行外部验证。

结果

在 398426 例成年 IBD 住院患者中,总体 IM 发生率为 0.32%,手术组为 0.87%(n=40784)。年龄增长、溃疡性结肠炎、IBD 相关手术、肺炎、慢性肺部疾病、急性肾损伤、营养不良、衰弱、心力衰竭、输血、脓毒症/感染性休克和血栓栓塞与 IM 增加相关。QLattice 算法提供了性能最佳的模型(+LR:3.2,95%CI 3.0-3.3;AUC:0.87,85%灵敏度,73%特异性),将高危和低危患者区分开来的能力提高了 15.6 倍。手术组模型(+LR:8.5,AUC:0.94,85%灵敏度,90%特异性),将 IM 患者区分开来的能力提高了 49 倍。两个模型在外部验证中均表现出色。我们开发了一个在线计算器(https://clinicalc.ai/im-ibd/),可以在床边进行模型预测。

结论

在线预测模型计算器在 IBD 相关住院期间捕获了超过 80%的 IM 病例,具有较高的区分能力。这允许风险分层,并为评估降低高危患者死亡率的干预措施提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/525a/10099396/0e9e5ab04b05/JGH-38-241-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验