Suppr超能文献

具有光捕获前表面的多结太阳能电池的理论建模与超薄设计及其在InGaP/GaAs/InGaAs三结中的应用。

Theoretical modeling and ultra-thin design for multi-junction solar cells with a light-trapping front surface and its application to InGaP/GaAs/InGaAs 3-junction.

作者信息

Zhu Lin, Wang Yongtao, Pan Xu, Akiyama Hidefumi

出版信息

Opt Express. 2022 Sep 26;30(20):35202-35218. doi: 10.1364/OE.466168.

Abstract

Light-trapping design is a good strategy to obtain ultra-thin solar cells without sacrificing conversion efficiency. If applied to III-V compound multi-junction solar cells (MJSCs), it not only can greatly reduce the cell cost and weight, but also improve its radiation tolerance when operating in space. This paper formulates all subcell absorptance in an arbitrary N-junction solar cell with an ideal front textured surface and perfect rear mirror, including the effects of complex absorption and luminescence coupling in the stack. Taking the well-known InGaP/GaAs/InGaAs triple-junction solar cell (3J) for instance, the ultra-thin design and the conversion efficiency both in radiative limit and that with subcell internal radiative efficiency below-unity are predicted. Our results show that such front-textured 3J with top-subcell thickness varying from 200 to 500 nm can enhance light absorption so significantly that more than 28% of top-subcell, 56% of middle-subcell, and 90% of bottom-subcell thickness will be cut down when compared with the smooth-surfaced 3J. Typically, (350 nm, 315 nm, 28 nm) is recommended as the optimal design for the front-textured 3J with an experimental efficiency of over 38%. For the same benchmarks on photocurrent of 15.1 mA/cm or detailed balance limit of 44%, the minimum total thickness (all subcells only) in the front-textured 3J is only 1453 nm, that is even 71% of that in the rear-textured 3J, quantitatively revealing front texturization has a greater potential for material cut-down than rear texturization. Finally, the impacts of non-ideal scattering texturization on cell performance and ultra-thin design are also discussed. This work provides theoretical guidance for experimental studies on ultra-thin and high-efficient MJSCs with various light-trapping strategies.

摘要

光捕获设计是一种在不牺牲转换效率的情况下获得超薄太阳能电池的良好策略。如果应用于III-V族化合物多结太阳能电池(MJSCs),它不仅可以大大降低电池成本和重量,还能提高其在太空运行时的辐射耐受性。本文推导了具有理想前表面纹理和完美后镜的任意N结太阳能电池中所有子电池的吸收率,包括叠层中复杂吸收和发光耦合的影响。以著名的InGaP/GaAs/InGaAs三结太阳能电池(3J)为例,预测了超薄设计以及辐射极限和子电池内部辐射效率低于1时的转换效率。我们的结果表明,这种前表面纹理化的3J,其顶部子电池厚度在200至500nm之间变化,能够显著增强光吸收,与光滑表面的3J相比,顶部子电池厚度可减少超过28%,中间子电池厚度可减少56%,底部子电池厚度可减少90%。通常,(350nm,315nm,28nm)被推荐为前表面纹理化3J的最佳设计,其实验效率超过38%。对于相同的15.1 mA/cm光电流基准或44%的详细平衡极限,前表面纹理化3J中的最小总厚度(仅所有子电池)仅为1453nm,甚至是后表面纹理化3J的71%,定量地揭示了前表面纹理化在材料削减方面比后表面纹理化具有更大的潜力。最后,还讨论了非理想散射纹理化对电池性能和超薄设计的影响。这项工作为采用各种光捕获策略的超薄高效MJSCs的实验研究提供了理论指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验