Suppr超能文献

RT-Cabi:一种基于物联网的框架,用于通过边缘协作和动态特征融合进行异常行为检测及数据校正。

RT-Cabi: an Internet of Things based framework for anomaly behavior detection with data correction through edge collaboration and dynamic feature fusion.

作者信息

Li Xiaoshan, Chen Mingming

机构信息

College of Information and Intelligent Mechatronics, Xiamen Huaxia University, Xiamen, China.

出版信息

PeerJ Comput Sci. 2024 Oct 21;10:e2306. doi: 10.7717/peerj-cs.2306. eCollection 2024.

Abstract

The rapid advancement of Internet of Things (IoT) technologies brings forth new security challenges, particularly in anomaly behavior detection in traffic flow. To address these challenges, this study introduces RT-Cabi (Real-Time Cyber-Intelligence Behavioral Anomaly Identifier), an innovative framework for IoT traffic anomaly detection that leverages edge computing to enhance the data processing and analysis capabilities, thereby improving the accuracy and efficiency of anomaly detection. RT-Cabi incorporates an adaptive edge collaboration mechanism, dynamic feature fusion and selection techniques, and optimized lightweight convolutional neural network (CNN) frameworks to address the limitations of traditional models in resource-constrained edge devices. Experiments conducted on two public datasets, Edge-IIoT and UNSW_NB15, demonstrate that RT-Cabi achieves a detection accuracy of 98.45% and 90.94%, respectively, significantly outperforming existing methods. These contributions not only validate the effectiveness of the RT-Cabi model in identifying anomalous behaviors in IoT traffic but also offer new perspectives and technological pathways for future research in IoT security.

摘要

物联网(IoT)技术的快速发展带来了新的安全挑战,尤其是在交通流中的异常行为检测方面。为应对这些挑战,本研究引入了RT-Cabi(实时网络智能行为异常识别器),这是一种用于物联网流量异常检测的创新框架,它利用边缘计算来增强数据处理和分析能力,从而提高异常检测的准确性和效率。RT-Cabi采用了自适应边缘协作机制、动态特征融合与选择技术以及优化的轻量级卷积神经网络(CNN)框架,以解决传统模型在资源受限的边缘设备中的局限性。在两个公共数据集Edge-IIoT和UNSW_NB15上进行的实验表明,RT-Cabi的检测准确率分别达到了98.45%和90.94%,显著优于现有方法。这些成果不仅验证了RT-Cabi模型在识别物联网流量异常行为方面的有效性,也为物联网安全的未来研究提供了新的视角和技术途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d01/11623291/8fbfb4e5eb7b/peerj-cs-10-2306-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验