Li Xiaoshan, Chen Mingming
College of Information and Intelligent Mechatronics, Xiamen Huaxia University, Xiamen, China.
PeerJ Comput Sci. 2024 Oct 21;10:e2306. doi: 10.7717/peerj-cs.2306. eCollection 2024.
The rapid advancement of Internet of Things (IoT) technologies brings forth new security challenges, particularly in anomaly behavior detection in traffic flow. To address these challenges, this study introduces RT-Cabi (Real-Time Cyber-Intelligence Behavioral Anomaly Identifier), an innovative framework for IoT traffic anomaly detection that leverages edge computing to enhance the data processing and analysis capabilities, thereby improving the accuracy and efficiency of anomaly detection. RT-Cabi incorporates an adaptive edge collaboration mechanism, dynamic feature fusion and selection techniques, and optimized lightweight convolutional neural network (CNN) frameworks to address the limitations of traditional models in resource-constrained edge devices. Experiments conducted on two public datasets, Edge-IIoT and UNSW_NB15, demonstrate that RT-Cabi achieves a detection accuracy of 98.45% and 90.94%, respectively, significantly outperforming existing methods. These contributions not only validate the effectiveness of the RT-Cabi model in identifying anomalous behaviors in IoT traffic but also offer new perspectives and technological pathways for future research in IoT security.
物联网(IoT)技术的快速发展带来了新的安全挑战,尤其是在交通流中的异常行为检测方面。为应对这些挑战,本研究引入了RT-Cabi(实时网络智能行为异常识别器),这是一种用于物联网流量异常检测的创新框架,它利用边缘计算来增强数据处理和分析能力,从而提高异常检测的准确性和效率。RT-Cabi采用了自适应边缘协作机制、动态特征融合与选择技术以及优化的轻量级卷积神经网络(CNN)框架,以解决传统模型在资源受限的边缘设备中的局限性。在两个公共数据集Edge-IIoT和UNSW_NB15上进行的实验表明,RT-Cabi的检测准确率分别达到了98.45%和90.94%,显著优于现有方法。这些成果不仅验证了RT-Cabi模型在识别物联网流量异常行为方面的有效性,也为物联网安全的未来研究提供了新的视角和技术途径。