Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
Int J Biol Sci. 2022 Sep 11;18(15):5753-5769. doi: 10.7150/ijbs.74196. eCollection 2022.
Macrophages exhibit diverse functions within various tissues during the inflammatory response, and the physical properties of tissues also modulate the characteristics of macrophages. However, the underlying N6-methyladenosine (mA)-associated molecular mechanisms remain unclear. Accordingly, we examined the potential role of mA in macrophage activation and stiffness sensing. Intriguingly, we found that the macrophage inflammatory response and global levels of mA were stiffness-dependent and that this was due to mechanically loosening the chromatin and epigenetic modification (H3K36me2 and HDAC3). In addition, we targeted mA methylation in a stiffness-dependent manner by screening the sequencing data and found that a higher stiffness hydrogel activated Jak-STAT and NFκB signalling and suppressed Fto gene expression. Next, by using the CRISPR/Cas9 system to knockout the FTO gene in macrophages, we demonstrated that FTO affects the stiffness-controlled macrophage inflammatory response by sustaining the negative feedback generated by SOCS1. Finally, we determined that the mA reader YTHDF1 binds mRNA and thereby maintains expression of SOCS1. Our results suggest that the FTO//YTHDF1 regulatory axis is vital to the stiffness-controlled macrophage inflammatory response and that the deletion of FTO affects the negative feedback control exerted by SOCS1. Our findings increase understanding of the regulatory mechanisms involved in macrophage activation and the control of inflammation.
巨噬细胞在炎症反应中表现出不同的功能,并且组织的物理性质也调节巨噬细胞的特征。然而,潜在的 N6-甲基腺苷 (mA)-相关分子机制尚不清楚。因此,我们研究了 mA 在巨噬细胞激活和刚性感知中的潜在作用。有趣的是,我们发现巨噬细胞炎症反应和 mA 的整体水平与刚性有关,这是由于机械松动染色质和表观遗传修饰 (H3K36me2 和 HDAC3)。此外,我们通过筛选测序数据以刚性依赖的方式靶向 mA 甲基化,发现更高刚性的水凝胶激活 Jak-STAT 和 NFκB 信号通路,并抑制 Fto 基因表达。接下来,我们使用 CRISPR/Cas9 系统敲除巨噬细胞中的 FTO 基因,证明 FTO 通过维持 SOCS1 产生的负反馈来影响刚性控制的巨噬细胞炎症反应。最后,我们确定 mA 阅读器 YTHDF1 结合 mRNA,从而维持 SOCS1 的表达。我们的研究结果表明,FTO//YTHDF1 调节轴对于刚性控制的巨噬细胞炎症反应至关重要,并且 FTO 的缺失会影响 SOCS1 施加的负反馈控制。我们的研究结果增加了对巨噬细胞激活和炎症控制中涉及的调节机制的理解。