Suppr超能文献

从多到一:单细胞RNA测序数据生成与分析的最新综述

From multitude to singularity: An up-to-date overview of scRNA-seq data generation and analysis.

作者信息

Carangelo Giulia, Magi Alberto, Semeraro Roberto

机构信息

Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.

Department of Information Engineering, University of Florence, Florence, Italy.

出版信息

Front Genet. 2022 Oct 3;13:994069. doi: 10.3389/fgene.2022.994069. eCollection 2022.

Abstract

Single cell RNA sequencing (scRNA-seq) is today a common and powerful technology in biomedical research settings, allowing to profile the whole transcriptome of a very large number of individual cells and reveal the heterogeneity of complex clinical samples. Traditionally, cells have been classified by their morphology or by expression of certain proteins in functionally distinct settings. The advent of next generation sequencing (NGS) technologies paved the way for the detection and quantitative analysis of cellular content. In this context, transcriptome quantification techniques made their advent, starting from the bulk RNA sequencing, unable to dissect the heterogeneity of a sample, and moving to the first single cell techniques capable of analyzing a small number of cells (1-100), arriving at the current single cell techniques able to generate hundreds of thousands of cells. As experimental protocols have improved rapidly, computational workflows for processing the data have also been refined, opening up to novel methods capable of scaling computational times more favorably with the dataset size and making scRNA-seq much better suited for biomedical research. In this perspective, we will highlight the key technological and computational developments which have enabled the analysis of this growing data, making the scRNA-seq a handy tool in clinical applications.

摘要

如今,单细胞RNA测序(scRNA-seq)在生物医学研究领域是一项常用且强大的技术,它能够对大量单个细胞的整个转录组进行分析,并揭示复杂临床样本的异质性。传统上,细胞是根据其形态或在功能不同的环境中某些蛋白质的表达来分类的。下一代测序(NGS)技术的出现为细胞内容物的检测和定量分析铺平了道路。在此背景下,转录组定量技术应运而生,从无法剖析样本异质性的批量RNA测序开始,发展到能够分析少量细胞(1 - 100个)的首批单细胞技术,再到如今能够分析数十万个细胞的当前单细胞技术。随着实验方案的迅速改进,用于处理数据的计算工作流程也得到了完善,催生了能够更有效地根据数据集大小扩展计算时间的新方法,使scRNA-seq更适合生物医学研究。从这个角度来看,我们将重点介绍关键的技术和计算进展,这些进展使得对不断增长的数据进行分析成为可能,从而使scRNA-seq成为临床应用中的便捷工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cae/9575985/4b281d7539b0/fgene-13-994069-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验