Suppr超能文献

Fast-Higashi:用于超快和可解释的单细胞 3D 基因组分析的方法。

Ultrafast and interpretable single-cell 3D genome analysis with Fast-Higashi.

机构信息

Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

出版信息

Cell Syst. 2022 Oct 19;13(10):798-807.e6. doi: 10.1016/j.cels.2022.09.004.

Abstract

Single-cell Hi-C (scHi-C) technologies can probe three-dimensional (3D) genome structures in individual cells. However, existing scHi-C analysis methods are hindered by the data quality and complex 3D genome patterns. The lack of computational scalability and interpretability poses further challenges for large-scale analysis. Here, we introduce Fast-Higashi, an ultrafast and interpretable method based on tensor decomposition and partial random walk with restart, enabling joint identification of cell identities and chromatin meta-interactions from sparse scHi-C data. Extensive evaluations demonstrate the advantage of Fast-Higashi over existing methods, leading to improved delineation of rare cell types and continuous developmental trajectories. Fast-Higashi can directly identify 3D genome features that define distinct cell types and help elucidate cell-type-specific connections between genome structure and function. Moreover, Fast-Higashi can generalize to incorporate other single-cell omics data. Fast-Higashi provides a highly efficient and interpretable scHi-C analysis solution that is applicable to a broad range of biological contexts.

摘要

单细胞 Hi-C(scHi-C)技术可在单个细胞中探测三维(3D)基因组结构。然而,现有的 scHi-C 分析方法受到数据质量和复杂的 3D 基因组模式的限制。缺乏计算可扩展性和可解释性为大规模分析带来了进一步的挑战。在这里,我们介绍了 Fast-Higashi,这是一种基于张量分解和部分随机游走与重启的超快且可解释的方法,能够从稀疏 scHi-C 数据中联合识别细胞身份和染色质元相互作用。广泛的评估表明,Fast-Higashi 优于现有方法,从而改善了稀有细胞类型的划分和连续的发育轨迹。Fast-Higashi 可以直接识别定义不同细胞类型的 3D 基因组特征,并有助于阐明基因组结构和功能之间的细胞类型特异性连接。此外,Fast-Higashi 可以推广到纳入其他单细胞组学数据。Fast-Higashi 提供了一种高效且可解释的 scHi-C 分析解决方案,适用于广泛的生物学背景。

相似文献

1
Ultrafast and interpretable single-cell 3D genome analysis with Fast-Higashi.
Cell Syst. 2022 Oct 19;13(10):798-807.e6. doi: 10.1016/j.cels.2022.09.004.
2
Multiscale and integrative single-cell Hi-C analysis with Higashi.
Nat Biotechnol. 2022 Feb;40(2):254-261. doi: 10.1038/s41587-021-01034-y. Epub 2021 Oct 11.
3
scGHOST: identifying single-cell 3D genome subcompartments.
Nat Methods. 2024 May;21(5):814-822. doi: 10.1038/s41592-024-02230-9. Epub 2024 Apr 8.
4
scGHOST: Identifying single-cell 3D genome subcompartments.
bioRxiv. 2023 May 25:2023.05.24.542032. doi: 10.1101/2023.05.24.542032.
5
The 3D Genome Structure of Single Cells.
Annu Rev Biomed Data Sci. 2021 Jul 20;4:21-41. doi: 10.1146/annurev-biodatasci-020121-084709. Epub 2021 Apr 23.
6
Joint tensor modeling of single cell 3D genome and epigenetic data with Muscle.
bioRxiv. 2023 Jan 28:2023.01.27.525871. doi: 10.1101/2023.01.27.525871.
7
Capturing cell type-specific chromatin compartment patterns by applying topic modeling to single-cell Hi-C data.
PLoS Comput Biol. 2020 Sep 18;16(9):e1008173. doi: 10.1371/journal.pcbi.1008173. eCollection 2020 Sep.
8
CTPredictor: A comprehensive and robust framework for predicting cell types by integrating multi-scale features from single-cell Hi-C data.
Comput Biol Med. 2024 May;173:108336. doi: 10.1016/j.compbiomed.2024.108336. Epub 2024 Mar 19.
9
scGAD: single-cell gene associating domain scores for exploratory analysis of scHi-C data.
Bioinformatics. 2022 Jul 11;38(14):3642-3644. doi: 10.1093/bioinformatics/btac372.
10
SnapHiC: a computational pipeline to identify chromatin loops from single-cell Hi-C data.
Nat Methods. 2021 Sep;18(9):1056-1059. doi: 10.1038/s41592-021-01231-2. Epub 2021 Aug 26.

引用本文的文献

2
Integrative, high-resolution analysis of single-cell gene expression across experimental conditions with PARAFAC2-RISE.
Cell Syst. 2025 Jun 18;16(6):101294. doi: 10.1016/j.cels.2025.101294. Epub 2025 May 15.
3
Unveiling Multi-Scale Architectural Features in Single-Cell Hi-C Data Using scCAFE.
Adv Sci (Weinh). 2025 Jun;12(23):e2416432. doi: 10.1002/advs.202416432. Epub 2025 Apr 24.
4
Three-dimensional genome structures of single mammalian sperm.
Nat Commun. 2025 Apr 23;16(1):3805. doi: 10.1038/s41467-025-59055-z.
5
Enhancing Single-Cell and Bulk Hi-C Data Using a Generative Transformer Model.
Biology (Basel). 2025 Mar 12;14(3):288. doi: 10.3390/biology14030288.
6
Examining the dynamics of three-dimensional genome organization with multitask matrix factorization.
Genome Res. 2025 May 2;35(5):1179-1193. doi: 10.1101/gr.279930.124.
7
ChromaFactor: Deconvolution of single-molecule chromatin organization with non-negative matrix factorization.
PLoS Comput Biol. 2025 Feb 18;21(2):e1012841. doi: 10.1371/journal.pcbi.1012841. eCollection 2025 Feb.
8
Advancements and future directions in single-cell Hi-C based 3D chromatin modeling.
Comput Struct Biotechnol J. 2024 Oct 3;23:3549-3558. doi: 10.1016/j.csbj.2024.09.026. eCollection 2024 Dec.
10
Single-Cell Hi-C Technologies and Computational Data Analysis.
Adv Sci (Weinh). 2025 Mar;12(9):e2412232. doi: 10.1002/advs.202412232. Epub 2025 Jan 30.

本文引用的文献

1
Normalization and de-noising of single-cell Hi-C data with BandNorm and scVI-3D.
Genome Biol. 2022 Oct 17;23(1):222. doi: 10.1186/s13059-022-02774-z.
2
Single nucleus multi-omics identifies human cortical cell regulatory genome diversity.
Cell Genom. 2022 Mar 9;2(3). doi: 10.1016/j.xgen.2022.100107.
3
Multiscale and integrative single-cell Hi-C analysis with Higashi.
Nat Biotechnol. 2022 Feb;40(2):254-261. doi: 10.1038/s41587-021-01034-y. Epub 2021 Oct 11.
4
DNA methylation atlas of the mouse brain at single-cell resolution.
Nature. 2021 Oct;598(7879):120-128. doi: 10.1038/s41586-020-03182-8. Epub 2021 Oct 6.
5
Single-cell nuclear architecture across cell types in the mouse brain.
Science. 2021 Oct 29;374(6567):586-594. doi: 10.1126/science.abj1966. Epub 2021 Sep 30.
6
The 3D Genome Structure of Single Cells.
Annu Rev Biomed Data Sci. 2021 Jul 20;4:21-41. doi: 10.1146/annurev-biodatasci-020121-084709. Epub 2021 Apr 23.
7
Integrated analysis of multimodal single-cell data.
Cell. 2021 Jun 24;184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048. Epub 2021 May 31.
9
The Self-Organizing Genome: Principles of Genome Architecture and Function.
Cell. 2020 Oct 1;183(1):28-45. doi: 10.1016/j.cell.2020.09.014. Epub 2020 Sep 24.
10
Capturing cell type-specific chromatin compartment patterns by applying topic modeling to single-cell Hi-C data.
PLoS Comput Biol. 2020 Sep 18;16(9):e1008173. doi: 10.1371/journal.pcbi.1008173. eCollection 2020 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验