Suppr超能文献

色度因子:用非负矩阵分解对单分子染色质组织进行反卷积

ChromaFactor: Deconvolution of single-molecule chromatin organization with non-negative matrix factorization.

作者信息

Gunsalus Laura M, Keiser Michael J, Pollard Katherine S

机构信息

Gladstone Institute of Data Science & Biotechnology, Gladstone Institutes, San Francisco, California, United States of America.

Bakar Computational Health Sciences Institute, University of California, San Francisco, California, United States of America.

出版信息

PLoS Comput Biol. 2025 Feb 18;21(2):e1012841. doi: 10.1371/journal.pcbi.1012841. eCollection 2025 Feb.

Abstract

The investigation of chromatin organization in single cells holds great promise for identifying causal relationships between genome structure and function. However, analysis of single-molecule data is hampered by extreme yet inherent heterogeneity, making it challenging to determine the contributions of individual chromatin fibers to bulk trends. To address this challenge, we propose ChromaFactor, a novel computational approach based on non-negative matrix factorization that deconvolves single-molecule chromatin organization datasets into their most salient primary components. ChromaFactor provides the ability to identify trends accounting for the maximum variance in the dataset while simultaneously describing the contribution of individual molecules to each component. Applying our approach to two single-molecule imaging datasets across different genomic scales, we find that these primary components demonstrate significant correlation with key functional phenotypes, including active transcription, enhancer-promoter distance, and genomic compartment. Also, we find that some bulk trends exist at the single-cell level, but only in a small fraction of cells, suggesting that critical changes in genome organization may be driven by specific rare subpopulations rather than occurring uniformly across all cells. ChromaFactor offers a robust tool for understanding the complex interplay between chromatin structure and function on individual DNA molecules, pinpointing which subpopulations drive functional changes and fostering new insights into cellular heterogeneity and its implications for bulk genomic phenomena.

摘要

对单细胞中染色质组织的研究对于确定基因组结构与功能之间的因果关系具有巨大潜力。然而,单分子数据的分析受到极端但固有的异质性的阻碍,这使得确定单个染色质纤维对整体趋势的贡献具有挑战性。为了应对这一挑战,我们提出了ChromaFactor,这是一种基于非负矩阵分解的新型计算方法,可将单分子染色质组织数据集解卷积为其最显著的主要成分。ChromaFactor能够识别占数据集最大方差的趋势,同时描述单个分子对每个成分的贡献。将我们的方法应用于跨不同基因组规模的两个单分子成像数据集,我们发现这些主要成分与关键功能表型显著相关,包括活跃转录、增强子 - 启动子距离和基因组区室。此外,我们发现一些整体趋势存在于单细胞水平,但仅在一小部分细胞中,这表明基因组组织的关键变化可能由特定的罕见亚群驱动,而不是在所有细胞中均匀发生。ChromaFactor为理解单个DNA分子上染色质结构与功能之间的复杂相互作用提供了一个强大的工具,确定哪些亚群驱动功能变化,并促进对细胞异质性及其对整体基因组现象的影响的新见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d6a/11849981/cd27d7ee2e1b/pcbi.1012841.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验