Suppr超能文献

使用Muscle对单细胞3D基因组和表观遗传数据进行联合张量建模。

Joint tensor modeling of single cell 3D genome and epigenetic data with Muscle.

作者信息

Park Kwangmoon, Keleş Sündüz

机构信息

Department of Statistics, University of Wisconsin, Madison, WI, USA, 53706.

Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA, 53726.

出版信息

bioRxiv. 2023 Jan 28:2023.01.27.525871. doi: 10.1101/2023.01.27.525871.

Abstract

Emerging single cell technologies that simultaneously capture long-range interactions of genomic loci together with their DNA methylation levels are advancing our understanding of three-dimensional genome structure and its interplay with the epigenome at the single cell level. While methods to analyze data from single cell high throughput chromatin conformation capture (scHi-C) experiments are maturing, methods that can jointly analyze multiple single cell modalities with scHi-C data are lacking. Here, we introduce Muscle, a semi-nonnegative joint decomposition of ltiple ingle el tnsors, to jointly analyze 3D conformation and DNA methylation data at the single cell level. Muscle takes advantage of the inherent tensor structure of the scHi-C data, and integrates this modality with DNA methylation. We developed an alternating least squares algorithm for estimating Muscle parameters and established its optimality properties. Parameters estimated by Muscle directly align with the key components of the downstream analysis of scHi-C data in a cell type specific manner. Evaluations with data-driven experiments and simulations demonstrate the advantages of the joint modeling framework of Muscle over single modality modeling or a baseline multi modality modeling for cell type delineation and elucidating associations between modalities. Muscle is publicly available at https://github.com/keleslab/muscle.

摘要

新兴的单细胞技术能够同时捕捉基因组位点的长程相互作用及其DNA甲基化水平,正在推动我们在单细胞水平上对三维基因组结构及其与表观基因组相互作用的理解。虽然分析单细胞高通量染色质构象捕获(scHi-C)实验数据的方法正在成熟,但缺乏能够将多种单细胞模态与scHi-C数据联合分析的方法。在这里,我们引入了Muscle,一种多单张量的半非负联合分解方法,用于在单细胞水平上联合分析三维构象和DNA甲基化数据。Muscle利用了scHi-C数据固有的张量结构,并将这种模态与DNA甲基化整合在一起。我们开发了一种交替最小二乘算法来估计Muscle参数,并建立了其最优性属性。Muscle估计的参数以细胞类型特异性的方式直接与scHi-C数据下游分析的关键组件对齐。通过数据驱动的实验和模拟进行的评估表明,Muscle的联合建模框架在细胞类型划分和阐明模态之间的关联方面优于单模态建模或基线多模态建模。Muscle可在https://github.com/keleslab/muscle上公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d69/9900892/92e02f0e7ce4/nihpp-2023.01.27.525871v1-f0001.jpg

相似文献

1
Joint tensor modeling of single cell 3D genome and epigenetic data with Muscle.
bioRxiv. 2023 Jan 28:2023.01.27.525871. doi: 10.1101/2023.01.27.525871.
2
Joint tensor modeling of single cell 3D genome and epigenetic data with Muscle.
J Am Stat Assoc. 2024;119(548):2464-2477. doi: 10.1080/01621459.2024.2358557. Epub 2024 Jun 26.
3
Ultrafast and interpretable single-cell 3D genome analysis with Fast-Higashi.
Cell Syst. 2022 Oct 19;13(10):798-807.e6. doi: 10.1016/j.cels.2022.09.004.
4
scGAD: single-cell gene associating domain scores for exploratory analysis of scHi-C data.
Bioinformatics. 2022 Jul 11;38(14):3642-3644. doi: 10.1093/bioinformatics/btac372.
5
scHiCcompare: An R Package for Differential Analysis of Single-cell Hi-C Data.
J Mol Biol. 2025 Apr 15:169155. doi: 10.1016/j.jmb.2025.169155.
6
Normalization and de-noising of single-cell Hi-C data with BandNorm and scVI-3D.
Genome Biol. 2022 Oct 17;23(1):222. doi: 10.1186/s13059-022-02774-z.
7
Multiscale and integrative single-cell Hi-C analysis with Higashi.
Nat Biotechnol. 2022 Feb;40(2):254-261. doi: 10.1038/s41587-021-01034-y. Epub 2021 Oct 11.
9
scGHOST: Identifying single-cell 3D genome subcompartments.
bioRxiv. 2023 May 25:2023.05.24.542032. doi: 10.1101/2023.05.24.542032.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验