Suppr超能文献

用于化学物质识别的高光谱成像:一种受人类启发的机器学习方法。

Hyperspectral imaging for chemicals identification: a human-inspired machine learning approach.

机构信息

Department of Environmental, Water and Agricultural Engineering, Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa, Israel.

Environmental Physics Department, Israel Institute for Biological Research, 24 Lerer St., 74100, Ness Ziona, Israel.

出版信息

Sci Rep. 2022 Oct 20;12(1):17580. doi: 10.1038/s41598-022-22468-7.

Abstract

Data analysis has increasingly relied on machine learning in recent years. Since machines implement mathematical algorithms without knowing the physical nature of the problem, they may be accurate but lack the flexibility to move across different domains. This manuscript presents a machine-educating approach where a machine is equipped with a physical model, universal building blocks, and an unlabeled dataset from which it derives its decision criteria. Here, the concept of machine education is deployed to identify thin layers of organic materials using hyperspectral imaging (HSI). The measured spectra formed a nonlinear mixture of the unknown background materials and the target material spectra. The machine was educated to resolve this nonlinear mixing and identify the spectral signature of the target materials. The inputs for educating and testing the machine were a nonlinear mixing model, the spectra of the pure target materials (which are problem invariant), and the unlabeled HSI data. The educated machine is accurate, and its generalization capabilities outperform classical machines. When using the educated machine, the number of falsely identified samples is ~ 100 times lower than the classical machine. The probability for detection with the educated machine is 96% compared to 90% with the classical machine.

摘要

近年来,数据分析越来越依赖于机器学习。由于机器在不知道问题物理性质的情况下执行数学算法,因此它们可能是准确的,但缺乏在不同领域之间迁移的灵活性。本文提出了一种机器教育方法,其中机器配备了物理模型、通用构建块和来自未标记数据集的决策标准。在这里,机器教育的概念被用于使用高光谱成像 (HSI) 识别薄有机材料层。测量的光谱是未知背景材料和目标材料光谱的非线性混合物。机器被教育来解决这种非线性混合并识别目标材料的光谱特征。用于教育和测试机器的输入是非线性混合模型、纯目标材料的光谱(这是不变的问题)和未标记的 HSI 数据。受过教育的机器是准确的,其泛化能力优于经典机器。使用受过教育的机器时,错误识别的样本数量比经典机器低约 100 倍。与经典机器的 90%相比,受过教育的机器的检测概率为 96%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b456/9584913/bfce657b7a97/41598_2022_22468_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验