Suppr超能文献

药物发现中的机器学习技术调查。

Survey of Machine Learning Techniques in Drug Discovery.

机构信息

Department of Computer Science, Pacific Lutheran University, Tacoma, WA 98447, United States.

Department of Mathematics, Pacific Lutheran University, Tacoma, WA 98447, United States.

出版信息

Curr Drug Metab. 2019;20(3):185-193. doi: 10.2174/1389200219666180820112457.

Abstract

BACKGROUND

Drug discovery, which is the process of discovering new candidate medications, is very important for pharmaceutical industries. At its current stage, discovering new drugs is still a very expensive and time-consuming process, requiring Phases I, II and III for clinical trials. Recently, machine learning techniques in Artificial Intelligence (AI), especially the deep learning techniques which allow a computational model to generate multiple layers, have been widely applied and achieved state-of-the-art performance in different fields, such as speech recognition, image classification, bioinformatics, etc. One very important application of these AI techniques is in the field of drug discovery.

METHODS

We did a large-scale literature search on existing scientific websites (e.g, ScienceDirect, Arxiv) and startup companies to understand current status of machine learning techniques in drug discovery.

RESULTS

Our experiments demonstrated that there are different patterns in machine learning fields and drug discovery fields. For example, keywords like prediction, brain, discovery, and treatment are usually in drug discovery fields. Also, the total number of papers published in drug discovery fields with machine learning techniques is increasing every year.

CONCLUSION

The main focus of this survey is to understand the current status of machine learning techniques in the drug discovery field within both academic and industrial settings, and discuss its potential future applications. Several interesting patterns for machine learning techniques in drug discovery fields are discussed in this survey.

摘要

背景

药物发现是制药行业非常重要的过程,即发现新候选药物的过程。在现阶段,发现新药仍然是一个非常昂贵和耗时的过程,需要进行临床试验的 I 期、II 期和 III 期。最近,人工智能(AI)中的机器学习技术,尤其是允许计算模型生成多层的深度学习技术,已被广泛应用,并在语音识别、图像分类、生物信息学等不同领域取得了最先进的性能。这些 AI 技术的一个非常重要的应用是在药物发现领域。

方法

我们在现有的科学网站(例如 ScienceDirect、Arxiv)和创业公司上进行了大规模的文献检索,以了解机器学习技术在药物发现中的现状。

结果

我们的实验表明,机器学习领域和药物发现领域存在不同的模式。例如,预测、大脑、发现和治疗等关键词通常出现在药物发现领域。此外,每年发表的带有机器学习技术的药物发现领域的论文总数都在增加。

结论

本调查的主要重点是了解学术和工业环境中药物发现领域中机器学习技术的现状,并讨论其潜在的未来应用。本调查讨论了药物发现领域中机器学习技术的几个有趣模式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验