Suppr超能文献

用更好的方法处理抽样不确定性来取代统计学显著性和非显著性。

Replacing statistical significance and non-significance with better approaches to sampling uncertainty.

作者信息

Hopkins Will G

机构信息

Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.

出版信息

Front Physiol. 2022 Sep 5;13:962132. doi: 10.3389/fphys.2022.962132. eCollection 2022.

Abstract

A sample provides only an approximate estimate of the magnitude of an effect, owing to sampling uncertainty. The following methods address the issue of sampling uncertainty when researchers make a claim about effect magnitude: informal assessment of the range of magnitudes represented by the confidence interval; testing of hypotheses of substantial (meaningful) and non-substantial magnitudes; assessment of the probabilities of substantial and trivial (inconsequential) magnitudes with Bayesian methods based on non-informative or informative priors; and testing of the nil or zero hypothesis. Assessment of the confidence interval, testing of substantial and non-substantial hypotheses, and assessment of Bayesian probabilities with a non-informative prior are subject to differing interpretations but are all effectively equivalent and can reasonably define and provide necessary and sufficient evidence for substantial and trivial effects. Informative priors in Bayesian assessments are problematic, because they are hard to quantify and can bias the outcome. Rejection of the nil hypothesis (presented as statistical significance), and failure to reject the nil hypothesis (presented as statistical non-significance), provide neither necessary nor sufficient evidence for substantial and trivial effects. To properly account for sampling uncertainty in effect magnitudes, researchers should therefore replace rather than supplement the nil-hypothesis test with one or more of the other three equivalent methods. Surprisal values, second-generation values, and the hypothesis comparisons of evidential statistics are three other recent approaches to sampling uncertainty that are not recommended. Important issues beyond sampling uncertainty include representativeness of sampling, accuracy of the statistical model, individual differences, individual responses, and rewards of benefit and costs of harm of clinically or practically important interventions and side effects.

摘要

由于抽样不确定性,样本仅提供效应大小的近似估计。当研究人员对效应大小提出主张时,以下方法可解决抽样不确定性问题:对置信区间所代表的效应大小范围进行非正式评估;对实质性(有意义)和非实质性效应大小的假设进行检验;基于无信息或有信息先验的贝叶斯方法评估实质性和微不足道(无关紧要)效应大小的概率;以及对零假设或虚无假设进行检验。对置信区间的评估、对实质性和非实质性假设的检验以及使用无信息先验对贝叶斯概率的评估存在不同解释,但实际上都是等效的,并且可以合理地定义并为实质性和微不足道的效应提供必要且充分的证据。贝叶斯评估中的有信息先验存在问题,因为它们难以量化且可能使结果产生偏差。拒绝零假设(表示为统计显著性)和未能拒绝零假设(表示为统计不显著性),都不能为实质性和微不足道的效应提供必要或充分的证据。因此,为了恰当地考虑效应大小中的抽样不确定性,研究人员应该用其他三种等效方法中的一种或多种来取代零假设检验,而不是对其进行补充。惊奇值、第二代值以及证据统计的假设比较是另外三种最近提出的处理抽样不确定性的方法,但不推荐使用。除抽样不确定性之外的重要问题包括抽样的代表性、统计模型的准确性、个体差异、个体反应以及临床或实际重要干预措施的益处和危害的成本效益以及副作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bc8/9578285/880b5c3868c2/fphys-13-962132-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验