Suppr超能文献

不确定性加先验等于理性偏差:直观的贝叶斯概率加权函数。

Uncertainty plus prior equals rational bias: an intuitive Bayesian probability weighting function.

机构信息

Department of Experimental Psychology, University of Bristol, Bristol, United Kingdom.

出版信息

Psychol Rev. 2012 Oct;119(4):878-87. doi: 10.1037/a0029346. Epub 2012 Jul 16.

Abstract

Empirical research has shown that when making choices based on probabilistic options, people behave as if they overestimate small probabilities, underestimate large probabilities, and treat positive and negative outcomes differently. These distortions have been modeled using a nonlinear probability weighting function, which is found in several nonexpected utility theories, including rank-dependent models and prospect theory; here, we propose a Bayesian approach to the probability weighting function and, with it, a psychological rationale. In the real world, uncertainty is ubiquitous and, accordingly, the optimal strategy is to combine probability statements with prior information using Bayes' rule. First, we show that any reasonable prior on probabilities leads to 2 of the observed effects; overweighting of low probabilities and underweighting of high probabilities. We then investigate 2 plausible kinds of priors: informative priors based on previous experience and uninformative priors of ignorance. Individually, these priors potentially lead to large problems of bias and inefficiency, respectively; however, when combined using Bayesian model comparison methods, both forms of prior can be applied adaptively, gaining the efficiency of empirical priors and the robustness of ignorance priors. We illustrate this for the simple case of generic good and bad options, using Internet blogs to estimate the relevant priors of inference. Given this combined ignorant/informative prior, the Bayesian probability weighting function is not only robust and efficient but also matches all of the major characteristics of the distortions found in empirical research.

摘要

实证研究表明,当基于概率选项做出选择时,人们的行为表现好像他们高估小概率,低估大概率,并且对正、负结果的处理方式不同。这些扭曲已经使用非线性概率加权函数进行了建模,该函数存在于几种非预期效用理论中,包括依赖于等级的模型和前景理论;在这里,我们提出了一种贝叶斯概率加权函数方法,并提出了一种心理原理。在现实世界中,不确定性无处不在,因此,最优策略是使用贝叶斯法则将概率陈述与先验信息相结合。首先,我们表明任何合理的概率先验都会导致观察到的两种效应:对低概率的过度加权和对高概率的低估。然后,我们研究了两种可能的先验:基于先前经验的信息性先验和无知的非信息性先验。单独来看,这些先验各自都可能导致严重的偏差和效率问题;但是,当使用贝叶斯模型比较方法结合使用时,这两种形式的先验都可以自适应地应用,从而获得经验先验的效率和无知先验的稳健性。我们以通用好和坏选项的简单情况为例,使用互联网博客来估计相关的推理先验。给定这种结合的无知/信息先验,贝叶斯概率加权函数不仅稳健且高效,而且还与实证研究中发现的所有主要扭曲特征相匹配。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验