Department of Cancer, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004 Liaoning Province, China.
Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 Liaoning Province, China.
Biomed Res Int. 2022 Oct 11;2022:9646846. doi: 10.1155/2022/9646846. eCollection 2022.
We want to develop a model for predicting lymph node status based on positron emission computed tomography (PET) images of untreated ovarian cancer patients. We use the feature map formed by wavelet transform and the parameters obtained by image segmentation to build the model. The model is expected to help clinicians and provide additional information about what to do with first-visit patients.
Our study included 224 patients with ovarian cancer. We have chosen two main methods to extract information from images. On the one hand, we segmented the image to extract the parameters to evaluate the clustering effect. On the other hand, we used wavelet transform to extract the image's texture information to form the image's feature map. Based on the above two kinds of information, we used residual neural network and support vector machine for modeling.
We established a model to predict lymph node metastasis in patients with primary ovarian cancer using PET images. On the training set, our accuracy was 0.8854, AUC: 0.9472, CI: 0.9098-0.9752, sensitivity was 0.9865, and specificity was 0.7952. On the test set, our accuracy was 0.9104, AUC: 0.9259, CI: 0.8417-0.9889, sensitivity was 0.8125, and specificity was 1.0000.
We used wavelet transform to process the preoperative medical images of ovarian cancer patients, and the residual neural network can effectively predict the lymph node metastasis of ovarian cancer patients, which is undoubted of great significance for patients' staging and treatment options.
我们希望开发一种基于未经治疗的卵巢癌患者正电子发射计算机断层扫描(PET)图像预测淋巴结状态的模型。我们使用小波变换形成的特征图和图像分割得到的参数来构建模型。该模型有望帮助临床医生,并提供有关首次就诊患者如何处理的额外信息。
我们的研究包括 224 名卵巢癌患者。我们选择了两种主要的方法从图像中提取信息。一方面,我们对图像进行分割以提取参数来评估聚类效果。另一方面,我们使用小波变换提取图像的纹理信息,以形成图像的特征图。基于上述两种信息,我们使用残差神经网络和支持向量机进行建模。
我们建立了一个使用 PET 图像预测原发性卵巢癌患者淋巴结转移的模型。在训练集上,我们的准确率为 0.8854,AUC:0.9472,CI:0.9098-0.9752,敏感度为 0.9865,特异性为 0.7952。在测试集上,我们的准确率为 0.9104,AUC:0.9259,CI:0.8417-0.9889,敏感度为 0.8125,特异性为 1.0000。
我们使用小波变换处理卵巢癌患者的术前医学图像,残差神经网络可以有效地预测卵巢癌患者的淋巴结转移,这对患者的分期和治疗方案选择具有重要意义。