Suppr超能文献

基于超声影像组学构建列线图预测高级别浆液性卵巢癌患者淋巴结状态的研究:一项回顾性分析。

Development and validation of an ultrasound‑based radiomics nomogram to predict lymph node status in patients with high-grade serous ovarian cancer: a retrospective analysis.

机构信息

Department of Ultrasound, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning Province, 110004, China.

Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.

出版信息

J Ovarian Res. 2024 Feb 22;17(1):48. doi: 10.1186/s13048-024-01375-7.

Abstract

BACKGROUND

Despite advances in medical imaging technology, the accurate preoperative prediction of lymph node status remains challenging in ovarian cancer. This retrospective study aimed to investigate the feasibility of using ultrasound-based radiomics combined with preoperative clinical characteristics to predict lymph node metastasis (LNM) in patients with high-grade serous ovarian cancer (HGSOC).

RESULTS

Patients with 401 HGSOC lesions from two institutions were enrolled: institution 1 for the training cohort (n = 322) and institution 2 for the external test cohort (n = 79). Radiomics features were extracted from the three preoperative ultrasound images of each lesion. During feature selection, primary screening was first performed using the sample variance F-value, followed by recursive feature elimination (RFE) to filter out the 12 most significant features for predicting LNM. The radscore derived from these 12 radiomic features and three clinical characteristics were used to construct a combined model and nomogram to predict LNM, and subsequent 10-fold cross-validation was performed. In the test phase, the three models were tested with external test cohort. The radiomics model had an area under the curve (AUC) of 0.899 (95% confidence interval [CI]: 0.864-0.933) in the training cohort and 0.855 (95%CI: 0.774-0.935) in the test cohort. The combined model showed good calibration and discrimination in the training cohort (AUC = 0.930) and test cohort (AUC = 0.881), which were superior to those of the radiomic and clinical models alone.

CONCLUSIONS

The nomogram consisting of the radscore and preoperative clinical characteristics showed good diagnostic performance in predicting LNM in patients with HGSOC. It may be used as a noninvasive method for assessing the lymph node status in these patients.

摘要

背景

尽管医学影像学技术取得了进步,但在卵巢癌中准确预测淋巴结状态仍然具有挑战性。本回顾性研究旨在探讨基于超声的放射组学与术前临床特征相结合预测高级别浆液性卵巢癌(HGSOC)患者淋巴结转移(LNM)的可行性。

结果

从两个机构纳入了 401 例 HGSOC 病变患者:机构 1 为训练队列(n=322),机构 2 为外部测试队列(n=79)。从每个病变的三个术前超声图像中提取放射组学特征。在特征选择过程中,首先使用样本方差 F 值进行初步筛选,然后进行递归特征消除(RFE)以筛选出 12 个预测 LNM 的最重要特征。这些 12 个放射组学特征和三个临床特征得出的 radscore 用于构建联合模型和列线图来预测 LNM,并随后进行 10 折交叉验证。在测试阶段,使用外部测试队列测试了三个模型。放射组学模型在训练队列中的 AUC 为 0.899(95%置信区间[CI]:0.864-0.933),在测试队列中的 AUC 为 0.855(95%CI:0.774-0.935)。联合模型在训练队列(AUC=0.930)和测试队列(AUC=0.881)中表现出良好的校准和区分度,优于单独的放射组学和临床模型。

结论

由 radscore 和术前临床特征组成的列线图在预测 HGSOC 患者 LNM 方面具有良好的诊断性能。它可能被用作评估这些患者淋巴结状态的非侵入性方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c739/10882775/2c4646f29291/13048_2024_1375_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验