Suppr超能文献

利用深度学习模型从 CT 和胸部 X 光图像中检测 COVID-19。

Detection of COVID-19 from CT and Chest X-ray Images Using Deep Learning Models.

机构信息

King Abdulaziz University (KAU), Jeddah, Saudi Arabia.

ATMS Lab, Advanced Technologies for Medicine and Signals, ENIS, Sfax University, Sfax, Tunisia.

出版信息

Ann Biomed Eng. 2022 Jul;50(7):825-835. doi: 10.1007/s10439-022-02958-5. Epub 2022 Apr 12.

Abstract

Coronavirus 2019 (COVID-19) is a highly transmissible and pathogenic virus caused by severe respiratory syndrome coronavirus 2 (SARS-CoV-2), which first appeared in Wuhan, China, and has since spread in the whole world. This pathology has caused a major health crisis in the world. However, the early detection of this anomaly is a key task to minimize their spread. Artificial intelligence is one of the approaches commonly used by researchers to discover the problems it causes and provide solutions. These estimates would help enable health systems to take the necessary steps to diagnose and track cases of COVID. In this review, we intend to offer a novel method of automatic detection of COVID-19 using tomographic images (CT) and radiographic images (Chest X-ray). In order to improve the performance of the detection system for this outbreak, we used two deep learning models: the VGG and ResNet. The results of the experiments show that our proposed models achieved the best accuracy of 99.35 and 96.77% respectively for VGG19 and ResNet50 with all the chest X-ray images.

摘要

2019 年冠状病毒(COVID-19)是一种由严重急性呼吸系统综合征冠状病毒 2 型(SARS-CoV-2)引起的高传染性和高致病性病毒,最初出现在中国武汉,此后已在全球范围内传播。这种病理学在世界范围内造成了重大的健康危机。然而,早期发现这种异常是最大限度减少其传播的关键任务。人工智能是研究人员用来发现其引起的问题并提供解决方案的常用方法之一。这些估计将有助于使卫生系统能够采取必要的步骤来诊断和跟踪 COVID 病例。在这篇综述中,我们旨在提供一种使用层析成像(CT)和放射成像(胸部 X 光)自动检测 COVID-19 的新方法。为了提高针对此次疫情的检测系统的性能,我们使用了两个深度学习模型:VGG 和 ResNet。实验结果表明,我们提出的模型在使用所有胸部 X 光图像时,VGG19 和 ResNet50 的准确率分别达到了 99.35%和 96.77%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验