Suppr超能文献

新冠知识:一种基于语义的方法,用于从各种来源构建与新冠相关的知识图谱并分析治疗毒性。

Knowledge4COVID-19: A semantic-based approach for constructing a COVID-19 related knowledge graph from various sources and analyzing treatments' toxicities.

作者信息

Sakor Ahmad, Jozashoori Samaneh, Niazmand Emetis, Rivas Ariam, Bougiatiotis Konstantinos, Aisopos Fotis, Iglesias Enrique, Rohde Philipp D, Padiya Trupti, Krithara Anastasia, Paliouras Georgios, Vidal Maria-Esther

机构信息

TIB Leibniz Information Centre for Science and Technology, Welfengarten 1 B, Hannover, Germany.

L3S Research Center, University of Hannover, Appelstraße 9a, Hannover, Germany.

出版信息

Web Semant. 2023 Jan;75:100760. doi: 10.1016/j.websem.2022.100760. Epub 2022 Oct 13.

Abstract

In this paper, we present Knowledge4COVID-19, a framework that aims to showcase the power of integrating disparate sources of knowledge to discover adverse drug effects caused by drug-drug interactions among COVID-19 treatments and pre-existing condition drugs. Initially, we focus on constructing the Knowledge4COVID-19 knowledge graph (KG) from the declarative definition of mapping rules using the RDF Mapping Language. Since valuable information about drug treatments, drug-drug interactions, and side effects is present in textual descriptions in scientific databases (e.g., DrugBank) or in scientific literature (e.g., the CORD-19, the Covid-19 Open Research Dataset), the Knowledge4COVID-19 framework implements Natural Language Processing. The Knowledge4COVID-19 framework extracts relevant entities and predicates that enable the fine-grained description of COVID-19 treatments and the potential adverse events that may occur when these treatments are combined with treatments of common comorbidities, e.g., hypertension, diabetes, or asthma. Moreover, on top of the KG, several techniques for the discovery and prediction of interactions and potential adverse effects of drugs have been developed with the aim of suggesting more accurate treatments for treating the virus. We provide services to traverse the KG and visualize the effects that a group of drugs may have on a treatment outcome. Knowledge4COVID-19 was part of the Pan-European in April 2020 and is publicly available as a resource through a GitHub repository and a DOI.

摘要

在本文中,我们介绍了Knowledge4COVID-19,这是一个旨在展示整合不同知识源以发现新冠治疗药物与已有疾病治疗药物之间药物相互作用所导致的药物不良反应的框架。最初,我们专注于使用RDF映射语言从映射规则的声明性定义构建Knowledge4COVID-19知识图谱(KG)。由于科学数据库(如DrugBank)或科学文献(如CORD-19、新冠开放研究数据集)中的文本描述中存在有关药物治疗、药物相互作用和副作用的有价值信息,Knowledge4COVID-19框架实施了自然语言处理。Knowledge4COVID-19框架提取相关实体和谓词,从而能够对新冠治疗进行细粒度描述,并描述这些治疗与常见合并症(如高血压、糖尿病或哮喘)的治疗联合使用时可能发生的潜在不良事件。此外,在知识图谱之上,还开发了几种用于发现和预测药物相互作用及潜在不良反应的技术,目的是为治疗该病毒建议更准确的治疗方法。我们提供遍历知识图谱并可视化一组药物可能对治疗结果产生的影响的服务。Knowledge4COVID-19在2020年4月是泛欧项目的一部分,并通过GitHub仓库和数字对象标识符作为一种资源公开可用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a65/9558693/17cf826e76a5/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验