University of Virginia, USA.
University of Virginia, USA.
Dev Cogn Neurosci. 2022 Dec;58:101163. doi: 10.1016/j.dcn.2022.101163. Epub 2022 Oct 17.
It is increasingly understood that moment-to-moment brain signal variability - traditionally modeled out of analyses as mere "noise" - serves a valuable functional role related to development, cognitive processing, and psychopathology. Multiscale entropy (MSE) - a measure of signal irregularity across temporal scales - is an increasingly popular analytic technique in human neuroscience calculated from time series such as electroencephalography (EEG) signals. MSE provides insight into the time-structure and (non)linearity of fluctuations in neural activity and network dynamics, capturing the brain's moment-to-moment complexity as it operates on multiple time scales. MSE is emerging as a powerful predictor of developmental processes and outcomes. However, differences in data preprocessing and MSE computation make it challenging to compare results across studies. Here, we (1) provide an introduction to MSE for developmental researchers, (2) demonstrate the effect of preprocessing procedures on scale-wise entropy estimates, and (3) establish a standardized EEG preprocessing and entropy estimation pipeline that adapts a critical modification to the original MSE algorithm, and generates reliable scale-wise entropy estimates capable of differentiating developmental stages and cognitive states. This novel pipeline - the Automated Preprocessing Pipe-Line for the Estimation of Scale-wise Entropy from EEG Data (APPLESEED) is fully automated, customizable, and freely available for download from https://github.com/mhpuglia/APPLESEED.
现在越来越多的人意识到,脑信号的即时变异性——传统上在分析中被视为仅仅是“噪声”——在与发展、认知处理和精神病理学相关的功能方面发挥着有价值的作用。多尺度熵(MSE)——一种跨时间尺度衡量信号不规则性的方法——是一种在人类神经科学中越来越流行的分析技术,它是从脑电图(EEG)信号等时间序列中计算出来的。MSE 提供了有关神经活动和网络动态随时间变化的时间结构和(非)线性的深入了解,它捕捉了大脑在多个时间尺度上运行时的即时复杂性。MSE 正在成为预测发展过程和结果的有力工具。然而,由于数据预处理和 MSE 计算的差异,使得跨研究比较结果变得具有挑战性。在这里,我们 (1) 为发展研究人员介绍了 MSE,(2) 展示了预处理程序对尺度熵估计的影响,以及 (3) 建立了一个标准化的 EEG 预处理和熵估计管道,该管道对原始 MSE 算法进行了关键修改,并生成了可靠的尺度熵估计,能够区分发展阶段和认知状态。这个新的管道——自动 EEG 数据尺度熵估计预处理管道(APPLESEED)是完全自动化的,可定制的,并可从 https://github.com/mhpuglia/APPLESEED 免费下载。