Suppr超能文献

标准多尺度熵反映了不匹配时间尺度下的神经动力学:信号不规则性与之有何关系?

Standard multiscale entropy reflects neural dynamics at mismatched temporal scales: What's signal irregularity got to do with it?

机构信息

Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.

Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.

出版信息

PLoS Comput Biol. 2020 May 11;16(5):e1007885. doi: 10.1371/journal.pcbi.1007885. eCollection 2020 May.

Abstract

Multiscale Entropy (MSE) is used to characterize the temporal irregularity of neural time series patterns. Due to its' presumed sensitivity to non-linear signal characteristics, MSE is typically considered a complementary measure of brain dynamics to signal variance and spectral power. However, the divergence between these measures is often unclear in application. Furthermore, it is commonly assumed (yet sparingly verified) that entropy estimated at specific time scales reflects signal irregularity at those precise time scales of brain function. We argue that such assumptions are not tenable. Using simulated and empirical electroencephalogram (EEG) data from 47 younger and 52 older adults, we indicate strong and previously underappreciated associations between MSE and spectral power, and highlight how these links preclude traditional interpretations of MSE time scales. Specifically, we show that the typical definition of temporal patterns via "similarity bounds" biases coarse MSE scales-that are thought to reflect slow dynamics-by high-frequency dynamics. Moreover, we demonstrate that entropy at fine time scales-presumed to indicate fast dynamics-is highly sensitive to broadband spectral power, a measure dominated by low-frequency contributions. Jointly, these issues produce counterintuitive reflections of frequency-specific content on MSE time scales. We emphasize the resulting inferential problems in a conceptual replication of cross-sectional age differences at rest, in which scale-specific entropy age effects could be explained by spectral power differences at mismatched temporal scales. Furthermore, we demonstrate how such problems may be alleviated, resulting in the indication of scale-specific age differences in rhythmic irregularity. By controlling for narrowband contributions, we indicate that spontaneous alpha rhythms during eyes open rest transiently reduce broadband signal irregularity. Finally, we recommend best practices that may better permit a valid estimation and interpretation of neural signal irregularity at time scales of interest.

摘要

多尺度熵(MSE)用于描述神经时间序列模式的时间不规则性。由于其被认为对非线性信号特征敏感,因此 MSE 通常被认为是对信号方差和频谱功率的大脑动力学的补充度量。然而,这些措施之间的差异在应用中通常不清楚。此外,通常假设(但很少验证)在特定时间尺度估计的熵反映了大脑功能的那些精确时间尺度的信号不规则性。我们认为这种假设是不可行的。使用来自 47 名年轻和 52 名年长成年人的模拟和经验性脑电图(EEG)数据,我们表明 MSE 与光谱功率之间存在强烈且以前未被充分认识的关联,并强调了这些联系如何排除了对 MSE 时间尺度的传统解释。具体来说,我们表明通过“相似性边界”定义时间模式的典型方法会通过高频动力学使粗时间尺度的 MSE 偏差-被认为反映缓慢动力学。此外,我们证明了精细时间尺度上的熵-被认为表示快速动力学-对宽带光谱功率高度敏感,这是一种由低频贡献主导的度量。总之,这些问题在静息时横截面年龄差异的概念复制中产生了对 MSE 时间尺度的频率特异性内容的反直觉反映。我们强调了在匹配时间尺度上的光谱功率差异可以解释特定尺度熵年龄效应的情况下产生的推理问题。此外,我们展示了如何缓解这些问题,从而指示特定尺度的节律不规则性的年龄差异。通过控制窄带贡献,我们表明在睁眼休息期间自发的阿尔法节律暂时降低了宽带信号的不规则性。最后,我们建议最佳实践,这可能更好地允许在感兴趣的时间尺度上对神经信号不规则性进行有效估计和解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07d/7241858/1193281e6ec9/pcbi.1007885.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验