Suppr超能文献

主动推断与两步任务。

Active inference and the two-step task.

机构信息

Neurocomputation and Neuroimaging Unit, Freie Universität Berlin, 14195, Berlin, Germany.

Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10117, Berlin, Germany.

出版信息

Sci Rep. 2022 Oct 21;12(1):17682. doi: 10.1038/s41598-022-21766-4.

Abstract

Sequential decision problems distill important challenges frequently faced by humans. Through repeated interactions with an uncertain world, unknown statistics need to be learned while balancing exploration and exploitation. Reinforcement learning is a prominent method for modeling such behaviour, with a prevalent application being the two-step task. However, recent studies indicate that the standard reinforcement learning model sometimes describes features of human task behaviour inaccurately and incompletely. We investigated whether active inference, a framework proposing a trade-off to the exploration-exploitation dilemma, could better describe human behaviour. Therefore, we re-analysed four publicly available datasets of the two-step task, performed Bayesian model selection, and compared behavioural model predictions. Two datasets, which revealed more model-based inference and behaviour indicative of directed exploration, were better described by active inference, while the models scored similarly for the remaining datasets. Learning using probability distributions appears to contribute to the improved model fits. Further, approximately half of all participants showed sensitivity to information gain as formulated under active inference, although behavioural exploration effects were not fully captured. These results contribute to the empirical validation of active inference as a model of human behaviour and the study of alternative models for the influential two-step task.

摘要

序贯决策问题提炼了人类经常面临的重要挑战。通过与不确定的世界反复交互,需要学习未知的统计数据,同时平衡探索和利用。强化学习是建模这种行为的一种突出方法,其一个常见的应用是两步任务。然而,最近的研究表明,标准的强化学习模型有时不能准确和完整地描述人类任务行为的特征。我们研究了主动推理(一种提出探索-利用困境权衡的框架)是否可以更好地描述人类行为。因此,我们重新分析了两步任务的四个公开可用数据集,进行了贝叶斯模型选择,并比较了行为模型预测。两个数据集揭示了更多基于模型的推理和有指导探索的行为,主动推理可以更好地描述这些数据集,而对于其余数据集,模型的得分相似。使用概率分布进行学习似乎有助于提高模型拟合度。此外,大约一半的参与者对主动推理中所表述的信息增益表现出敏感性,尽管行为探索效应并未完全捕捉到。这些结果有助于对主动推理作为人类行为模型的实证验证,并对有影响力的两步任务的替代模型进行研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7443/9586964/cabde263ce4d/41598_2022_21766_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验