Suppr超能文献

铜绿假单胞菌中亚氯酸盐毒性和抗性的机制。

Mechanisms of chlorate toxicity and resistance in Pseudomonas aeruginosa.

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.

Proteome Exploration Laboratory, Beckman Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.

出版信息

Mol Microbiol. 2022 Oct;118(4):321-335. doi: 10.1111/mmi.14972. Epub 2022 Aug 15.

Abstract

Pseudomonas aeruginosa is an opportunistic bacterial pathogen that often encounters hypoxic/anoxic environments within the host, which increases its tolerance to many conventional antibiotics. Toward identifying novel treatments, we explored the therapeutic potential of chlorate, a pro-drug that kills hypoxic/anoxic, antibiotic-tolerant P. aeruginosa populations. While chlorate itself is relatively nontoxic, it is enzymatically reduced to the toxic oxidizing agent, chlorite, by hypoxically induced nitrate reductase. To better assess chlorate's therapeutic potential, we investigated mechanisms of chlorate toxicity and resistance in P. aeruginosa. We used transposon mutagenesis to identify genes that alter P. aeruginosa fitness during chlorate treatment, finding that methionine sulfoxide reductases (Msr), which repair oxidized methionine residues, support survival during chlorate stress. Chlorate treatment leads to proteome-wide methionine oxidation, which is exacerbated in a ∆msrA∆msrB strain. In response to chlorate, P. aeruginosa upregulates proteins involved in a wide range of functions, including metabolism, DNA replication/repair, protein repair, transcription, and translation, and these newly synthesized proteins are particularly vulnerable to methionine oxidation. The addition of exogenous methionine partially rescues P. aeruginosa survival during chlorate treatment, suggesting that widespread methionine oxidation contributes to death. Finally, we found that mutations that decrease nitrate reductase activity are a common mechanism of chlorate resistance.

摘要

铜绿假单胞菌是一种机会性病原体,它在宿主体内经常遇到缺氧/乏氧环境,这增加了它对许多常规抗生素的耐受性。为了寻找新的治疗方法,我们探索了氯酸盐的治疗潜力,氯酸盐是一种前药,可以杀死缺氧/乏氧、抗生素耐受的铜绿假单胞菌。虽然氯酸盐本身相对无毒,但它被缺氧诱导的硝酸还原酶酶促还原为有毒的氧化剂亚氯酸盐。为了更好地评估氯酸盐的治疗潜力,我们研究了铜绿假单胞菌中氯酸盐毒性和耐药性的机制。我们使用转座子诱变来鉴定在氯酸盐处理过程中改变铜绿假单胞菌适应性的基因,发现修复氧化蛋氨酸残基的蛋氨酸亚砜还原酶(Msr)在氯酸盐应激期间支持存活。氯酸盐处理导致蛋白质组范围内的蛋氨酸氧化,在 ∆msrA∆msrB 菌株中更为严重。铜绿假单胞菌对氯酸盐的反应上调了涉及广泛功能的蛋白质,包括代谢、DNA 复制/修复、蛋白质修复、转录和翻译,这些新合成的蛋白质特别容易受到蛋氨酸氧化的影响。外源性蛋氨酸的添加部分挽救了铜绿假单胞菌在氯酸盐处理过程中的存活,表明广泛的蛋氨酸氧化导致死亡。最后,我们发现降低硝酸还原酶活性的突变是氯酸盐耐药的常见机制。

相似文献

1
Mechanisms of chlorate toxicity and resistance in Pseudomonas aeruginosa.
Mol Microbiol. 2022 Oct;118(4):321-335. doi: 10.1111/mmi.14972. Epub 2022 Aug 15.
3
Targeting Anaerobic Respiration in with Chlorate Improves Healing of Chronic Wounds.
Adv Wound Care (New Rochelle). 2024 Feb;13(2):53-69. doi: 10.1089/wound.2023.0036. Epub 2023 Aug 14.
4
Methionine oxidation under anaerobic conditions in Escherichia coli.
Mol Microbiol. 2022 Oct;118(4):387-402. doi: 10.1111/mmi.14971. Epub 2022 Aug 17.
5
Nitrate and (per)chlorate reduction pathways in (per)chlorate-reducing bacteria.
Biochem Soc Trans. 2011 Jan;39(1):230-5. doi: 10.1042/BST0390230.
6
Chlorate toxicity in Aspergillus nidulans. Studies of mutants altered in nitrate assimilation.
Mol Gen Genet. 1976 Jul 23;146(2):147-59. doi: 10.1007/BF00268083.
7
Interference of chlorate and chlorite with nitrate reduction in resting cells of Paracoccus denitrificans.
Microbiology (Reading). 2006 Dec;152(Pt 12):3529-3534. doi: 10.1099/mic.0.29276-0.
9
Growth of Pseudomonas chloritidismutans AW-1(T) on n-alkanes with chlorate as electron acceptor.
Appl Microbiol Biotechnol. 2009 Jun;83(4):739-47. doi: 10.1007/s00253-009-1985-9. Epub 2009 Apr 8.

引用本文的文献

2
Isolation and identification of chlorate-reducing sp. from milk.
Microbiology (Reading). 2023 Jul;169(7). doi: 10.1099/mic.0.001347.
3
Targeting Anaerobic Respiration in with Chlorate Improves Healing of Chronic Wounds.
Adv Wound Care (New Rochelle). 2024 Feb;13(2):53-69. doi: 10.1089/wound.2023.0036. Epub 2023 Aug 14.
4
Engineering of a Bacterial Biosensor for the Detection of Chlorate in Food.
Biosensors (Basel). 2023 Jun 6;13(6):629. doi: 10.3390/bios13060629.

本文引用的文献

1
The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences.
Nucleic Acids Res. 2022 Jan 7;50(D1):D543-D552. doi: 10.1093/nar/gkab1038.
2
From coarse to fine: the absolute Escherichia coli proteome under diverse growth conditions.
Mol Syst Biol. 2021 May;17(5):e9536. doi: 10.15252/msb.20209536.
3
The evolution of virulence in during chronic wound infection.
Proc Biol Sci. 2020 Oct 28;287(1937):20202272. doi: 10.1098/rspb.2020.2272. Epub 2020 Oct 21.
4
Heat-shock proteases promote survival of during growth arrest.
Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4358-4367. doi: 10.1073/pnas.1912082117. Epub 2020 Feb 6.
5
Quantitative Analysis of in Vivo Methionine Oxidation of the Human Proteome.
J Proteome Res. 2020 Feb 7;19(2):624-633. doi: 10.1021/acs.jproteome.9b00505. Epub 2020 Jan 7.
7
Two FtsH Proteases Contribute to Fitness and Adaptation of Clone C Strains.
Front Microbiol. 2019 Jul 9;10:1372. doi: 10.3389/fmicb.2019.01372. eCollection 2019.
8
NADH Dehydrogenases in Growth and Virulence.
Front Microbiol. 2019 Feb 5;10:75. doi: 10.3389/fmicb.2019.00075. eCollection 2019.
10
Understanding and Sensitizing Density-Dependent Persistence to Quinolone Antibiotics.
Mol Cell. 2017 Dec 21;68(6):1147-1154.e3. doi: 10.1016/j.molcel.2017.11.012. Epub 2017 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验