Suppr超能文献

氯酸盐特异性靶向铜绿假单胞菌生物膜中氧化剂饥饿、抗生素耐受的群体。

Chlorate Specifically Targets Oxidant-Starved, Antibiotic-Tolerant Populations of Pseudomonas aeruginosa Biofilms.

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA

出版信息

mBio. 2018 Sep 25;9(5):e01400-18. doi: 10.1128/mBio.01400-18.

Abstract

Nitrate respiration is a widespread mode of anaerobic energy generation used by many bacterial pathogens, and the respiratory nitrate reductase, Nar, has long been known to reduce chlorate to the toxic oxidizing agent chlorite. Here, we demonstrate the antibacterial activity of chlorate against , a representative pathogen that can inhabit hypoxic or anoxic host microenvironments during infection. Aerobically grown cells are tobramycin sensitive but chlorate tolerant. In the absence of oxygen or an alternative electron acceptor, cells are tobramycin tolerant but chlorate sensitive via Nar-dependent reduction. The fact that chlorite, the product of chlorate reduction, is not detected in culture supernatants suggests that it may react rapidly and be retained intracellularly. Tobramycin and chlorate target distinct populations within metabolically stratified aggregate biofilms; tobramycin kills cells on the oxic periphery, whereas chlorate kills hypoxic and anoxic cells in the interior. In a matrix populated by multiple aggregates, tobramycin-mediated death of surface aggregates enables deeper oxygen penetration into the matrix, benefiting select aggregate populations by increasing survival and removing chlorate sensitivity. Finally, mutants, which commonly arise in infections and are known to withstand conventional antibiotic treatment, are hypersensitive to chlorate. A mutant shows a propensity to respire nitrate and reduce chlorate more rapidly than the wild type does, consistent with its heightened chlorate sensitivity. These findings illustrate chlorate's potential to selectively target oxidant-starved pathogens, including physiological states and genotypes of that represent antibiotic-tolerant populations during infections. The anaerobic growth and survival of bacteria are often correlated with physiological tolerance to conventional antibiotics, motivating the development of novel strategies targeting pathogens in anoxic environments. A key challenge is to identify drug targets that are specific to this metabolic state. Chlorate is a nontoxic compound that can be reduced to toxic chlorite by a widespread enzyme of anaerobic metabolism. We tested the antibacterial properties of chlorate against , a pathogen that can inhabit hypoxic or anoxic microenvironments, including those that arise in human infection. Chlorate and the antibiotic tobramycin kill distinct metabolic populations in biofilms, where chlorate targets anaerobic cells that tolerate tobramycin. Chlorate is particularly effective against mutants, which are frequently isolated from human infections and more resistant to some antibiotics. This work suggests that chlorate may hold potential as an anaerobic prodrug.

摘要

硝酸盐呼吸是许多细菌病原体广泛采用的一种无氧能量生成方式,呼吸硝酸盐还原酶 Nar 长期以来被认为能将氯酸盐还原为有毒氧化剂亚氯酸。在这里,我们证明了氯酸盐对的抗菌活性,是一种能在感染过程中栖息于缺氧或无氧宿主微环境的代表性病原体。需氧生长的细胞对妥布霉素敏感但对氯酸盐耐受。在没有氧气或替代电子受体的情况下,细胞对妥布霉素耐受但对氯酸盐敏感,这是通过 Nar 依赖性还原实现的。事实上,在培养上清液中未检测到氯酸盐还原产物亚氯酸,这表明它可能迅速反应并被保留在细胞内。妥布霉素和氯酸盐针对代谢分层聚集生物膜中的不同群体;妥布霉素杀死有氧外围的细胞,而氯酸盐杀死内部的缺氧和无氧细胞。在由多个聚集物组成的基质中,妥布霉素介导的表面聚集物死亡使更多的氧气渗透到基质中,通过增加存活和去除氯酸盐敏感性来使选择的聚集物群体受益。最后,在 感染中常见且已知能耐受常规抗生素治疗的突变体对氯酸盐敏感。与野生型相比,突变体呼吸硝酸盐和还原氯酸盐的速度更快,这与其对氯酸盐的高敏感性一致。这些发现说明了氯酸盐选择性靶向氧化剂饥饿病原体的潜力,包括在感染过程中代表抗生素耐受种群的生理状态和基因型。细菌的无氧生长和存活通常与对常规抗生素的生理耐受性相关,这促使人们开发针对缺氧环境中病原体的新策略。一个关键的挑战是确定特定于这种代谢状态的药物靶点。氯酸盐是一种无毒化合物,可被一种广泛存在的无氧代谢酶还原为有毒的亚氯酸。我们测试了氯酸盐对的抗菌特性,是一种能栖息于缺氧或无氧微环境的病原体,包括在人类感染中出现的微环境。氯酸盐和抗生素妥布霉素杀死生物膜中不同的代谢群体,其中氯酸盐针对耐受妥布霉素的无氧细胞。氯酸盐对突变体特别有效,突变体经常从人类感染中分离出来,对一些抗生素更耐药。这项工作表明,氯酸盐可能作为一种厌氧前药具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9557/6156191/3db6b9d918e3/mbo0051840840001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验