Suppr超能文献

腹腔镜胆囊切除术关键结构的自动识别。

Automated identification of critical structures in laparoscopic cholecystectomy.

机构信息

Digital Surgery, Medtronic, London, UK.

Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK.

出版信息

Int J Comput Assist Radiol Surg. 2022 Dec;17(12):2173-2181. doi: 10.1007/s11548-022-02771-4. Epub 2022 Oct 22.

Abstract

PURPOSE

Bile duct injury is a significant problem in laparoscopic cholecystectomy and can have grave consequences for patient outcomes. Automatic identification of the critical structures (cystic duct and cystic artery) could potentially reduce complications during surgery by helping the surgeon establish Critical View of Safety, or eventually may even provide real time intra-operative guidance.

METHODS

A computer vision model was trained to identify the critical structures. Label relaxation enabled the model to cope with ambiguous spatial extent and high annotation variability. Pseudo-label self-supervision allowed the model to use unlabelled data, which can be particularly beneficial when scarce labelled data is available for training. Intrinsic variability in annotations was assessed across several annotators, quantifying the extent of annotation ambiguity and setting a baseline for model accuracy.

RESULTS

Using 3050 labelled and 3682 unlabelled cholecystectomy frames, the model achieved an IoU of 65% and presence detection F1 score of 75%. Inter-annotator IoU agreement was 70%, demonstrating the model was near human-level agreement on average in this dataset. The model's outputs were validated by three expert surgeons, who confirmed that its outputs were accurate and promising for future usage.

CONCLUSION

Identification of critical structures can achieve high accuracy, and is a promising step towards computer-assisted intervention in addition to potential applications in analytics and education. High accuracy and surgeon approval is maintained when detecting the structures separately as distinct classes. Future work will focus on guaranteeing safe identification of critical anatomy, including the bile duct, and validating the performance of automated approaches.

摘要

目的

胆管损伤是腹腔镜胆囊切除术的一个严重问题,可能对患者的预后产生严重后果。自动识别关键结构(胆囊管和胆囊动脉)可以通过帮助外科医生建立安全关键视图来减少手术中的并发症,或者最终甚至可以提供实时术中指导。

方法

训练了一个计算机视觉模型来识别关键结构。标签松弛使模型能够应对空间范围的模糊性和高注释可变性。伪标签自监督允许模型使用未标记的数据,当训练数据稀缺时,这尤其有益。在几个注释者之间评估注释的内在变异性,量化注释的歧义程度,并为模型准确性设定基线。

结果

使用 3050 个标记和 3682 个未标记的胆囊切除术帧,该模型实现了 65%的 IoU 和 75%的存在检测 F1 分数。注释者之间的 IoU 一致性为 70%,表明该模型在该数据集上的平均水平接近人类水平。三位专家外科医生验证了该模型的输出,他们证实其输出准确,并有望在未来使用。

结论

关键结构的识别可以达到很高的准确性,并且除了在分析和教育方面的潜在应用外,还是计算机辅助干预的一个有前途的步骤。当分别作为不同的类来检测结构时,该模型可以保持高准确性和外科医生的认可。未来的工作将集中在保证关键解剖结构的安全识别上,包括胆管,并验证自动方法的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验