Suppr超能文献

用于实时手术决策支持的手术室就绪型人工智能的开发、部署和扩展。

Development, deployment and scaling of operating room-ready artificial intelligence for real-time surgical decision support.

作者信息

Protserov Sergey, Hunter Jaryd, Zhang Haochi, Mashouri Pouria, Masino Caterina, Brudno Michael, Madani Amin

机构信息

DATA Team, University Health Network, Toronto, ON, Canada.

Department of Computer Science, University of Toronto, Toronto, ON, Canada.

出版信息

NPJ Digit Med. 2024 Sep 3;7(1):231. doi: 10.1038/s41746-024-01225-2.

Abstract

Deep learning for computer vision can be leveraged for interpreting surgical scenes and providing surgeons with real-time guidance to avoid complications. However, neither generalizability nor scalability of computer-vision-based surgical guidance systems have been demonstrated, especially to geographic locations that lack hardware and infrastructure necessary for real-time inference. We propose a new equipment-agnostic framework for real-time use in operating suites. Using laparoscopic cholecystectomy and semantic segmentation models for predicting safe/dangerous ("Go"/"No-Go") zones of dissection as an example use case, this study aimed to develop and test the performance of a novel data pipeline linked to a web-platform that enables real-time deployment from any edge device. To test this infrastructure and demonstrate its scalability and generalizability, lightweight U-Net and SegFormer models were trained on annotated frames from a large and diverse multicenter dataset from 136 institutions, and then tested on a separate prospectively collected dataset. A web-platform was created to enable real-time inference on any surgical video stream, and performance was tested on and optimized for a range of network speeds. The U-Net and SegFormer models respectively achieved mean Dice scores of 57% and 60%, precision 45% and 53%, and recall 82% and 75% for predicting the Go zone, and mean Dice scores of 76% and 76%, precision 68% and 68%, and recall 92% and 92% for predicting the No-Go zone. After optimization of the client-server interaction over the network, we deliver a prediction stream of at least 60 fps and with a maximum round-trip delay of 70 ms for speeds above 8 Mbps. Clinical deployment of machine learning models for surgical guidance is feasible and cost-effective using a generalizable, scalable and equipment-agnostic framework that lacks dependency on hardware with high computing performance or ultra-fast internet connection speed.

摘要

可利用用于计算机视觉的深度学习来解读手术场景,并为外科医生提供实时指导以避免并发症。然而,基于计算机视觉的手术指导系统的通用性和可扩展性均未得到证实,尤其是在缺乏实时推理所需硬件和基础设施的地理位置。我们提出了一种新的与设备无关的框架,以便在手术室中实时使用。以腹腔镜胆囊切除术和用于预测安全/危险(“继续”/“停止”)解剖区域的语义分割模型为例,本研究旨在开发并测试与网络平台相连的新型数据管道的性能,该管道能够从任何边缘设备进行实时部署。为了测试此基础设施并证明其可扩展性和通用性,在来自136个机构的大型多样的多中心数据集中的带注释帧上训练了轻量级U-Net和SegFormer模型,然后在单独的前瞻性收集数据集中进行测试。创建了一个网络平台,以对任何手术视频流进行实时推理,并针对一系列网络速度进行性能测试和优化。U-Net和SegFormer模型在预测“继续”区域时,平均Dice分数分别为57%和60%,精确率为45%和53%,召回率为82%和75%;在预测“停止”区域时,平均Dice分数分别为76%和76%,精确率为68%和68%,召回率为92%和92%。在通过网络优化客户端-服务器交互后,对于高于8Mbps的速度,我们能够提供至少60fps的预测流,最大往返延迟为70毫秒。使用一种通用、可扩展且与设备无关的框架,机器学习模型用于手术指导的临床部署是可行且具有成本效益的,该框架不依赖于具有高计算性能的硬件或超高速互联网连接速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f098/11372100/cc1a61f4fa36/41746_2024_1225_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验