Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing100871, P. R. China.
Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin300350, P. R. China.
J Am Chem Soc. 2022 Nov 16;144(45):20797-20803. doi: 10.1021/jacs.2c08664. Epub 2022 Oct 23.
The PNP structure realized by energy band engineering is widely used in various electronic and optoelectronic devices. In this work, we succeed in constructing a PNP-type single-molecule junction and explore the intrinsic characteristics of the PNP structure at the single-molecule level. A back-to-back azulene molecule is designed with opposite ∼1.7 D dipole moments to create PNP-type single-molecule junctions. In combination with theoretical and experimental studies, it is found that the intrinsic dipole can effectively adjust single-molecule charge transport and the corresponding potential barriers. This energy band control and charge transport regulation at the single-molecule level improve deep understanding of molecular charge transport mechanisms and provide important insights into the development of high-performance functional molecular nanocircuits toward practical applications.
通过能带工程实现的 PNP 结构广泛应用于各种电子和光电设备中。在这项工作中,我们成功构建了 PNP 型单分子结,并在单分子水平上探索了 PNP 结构的固有特性。通过设计具有相反的 ∼1.7 D 偶极矩的背对背薁分子来构建 PNP 型单分子结。结合理论和实验研究,发现固有偶极矩可以有效地调节单分子电荷输运和相应的势垒。这种单分子水平的能带控制和电荷输运调节加深了对分子电荷输运机制的理解,并为开发高性能功能分子纳米电路以实现实际应用提供了重要的见解。