Gabbott P L, Stewart M G
Neuroscience. 1987 Jun;21(3):833-45. doi: 10.1016/0306-4522(87)90040-6.
The neuronal and glial cell composition of the rat visual cortex (area 17) has been determined quantitatively using stereological techniques. The volume numerical densities (number of cells per mm3 of cortex) of neurons and of the principal glial cell types (astroglia, oligodendroglia, and microglia) were calculated from tangential semithin resin sections spaced at regular intervals 50 micron apart throughout the entire depth of the visual cortex. From measurements of cortical and laminar thickness the separate volume numerical densities of neurons and glial cells were derived for each lamina in the cortex. In addition, the absolute numbers of cells in each lamina under 1 mm2 of cortical surface were calculated. The mean cortical volume numerical density of neurons was 60,020 +/- 3840/mm3 (mean +/- SEM; n = 8), and 49,040 +/- 2610/mm3 for the combined glial cell types. Astroglia, oligodendroglia, and microglia were present in a ratio of 6:3:1 respectively. It was determined from neuronal and glial somatic volume estimates that the somata of these cells occupied approximately 13.5% of unit cortical volume, with 81.3% of the unit volume being occupied by cortical neuropil. Using previously published reports that described the laminar composition of neurons in terms of the relative proportions of pyramidal and non-pyramidal cells, the laminar volume numerical densities for these neuronal categories have been derived. In addition, it has been estimated that under 1 mm2 of cortical surface there are 79,500 pyramidal and 7790 non-pyramidal neurons distributed throughout layers 1-6 of the rat visual cortex.