Suppr超能文献

一种基于梯度提升机的迁移学习方法用于阿尔茨海默病的诊断。

A transfer learning approach based on gradient boosting machine for diagnosis of Alzheimer's disease.

作者信息

Shojaie Mehdi, Cabrerizo Mercedes, DeKosky Steven T, Vaillancourt David E, Loewenstein David, Duara Ranjan, Adjouadi Malek

机构信息

Department of Electrical and Computer Engineering, Center for Advanced Technology and Education, Florida International University, Miami, FL, United States.

Fixel Institute for Neurological Disorders, University of Florida, Gainesville, FL, United States.

出版信息

Front Aging Neurosci. 2022 Oct 5;14:966883. doi: 10.3389/fnagi.2022.966883. eCollection 2022.

Abstract

Early detection of Alzheimer's disease (AD) during the Mild Cognitive Impairment (MCI) stage could enable effective intervention to slow down disease progression. Computer-aided diagnosis of AD relies on a sufficient amount of biomarker data. When this requirement is not fulfilled, transfer learning can be used to transfer knowledge from a source domain with more amount of labeled data than available in the desired target domain. In this study, an instance-based transfer learning framework is presented based on the gradient boosting machine (GBM). In GBM, a sequence of base learners is built, and each learner focuses on the errors (residuals) of the previous learner. In our transfer learning version of GBM (TrGB), a weighting mechanism based on the residuals of the base learners is defined for the source instances. Consequently, instances with different distribution than the target data will have a lower impact on the target learner. The proposed weighting scheme aims to transfer as much information as possible from the source domain while avoiding negative transfer. The target data in this study was obtained from the Mount Sinai dataset which is collected and processed in a collaborative 5-year project at the Mount Sinai Medical Center. The Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset was used as the source domain. The experimental results showed that the proposed TrGB algorithm could improve the classification accuracy by 1.5 and 4.5% for CN vs. MCI and multiclass classification, respectively, as compared to the conventional methods. Also, using the TrGB model and transferred knowledge from the CN vs. AD classification of the source domain, the average score of early MCI vs. late MCI classification improved by 5%.

摘要

在轻度认知障碍(MCI)阶段早期检测阿尔茨海默病(AD)能够进行有效干预以减缓疾病进展。AD的计算机辅助诊断依赖于足够数量的生物标志物数据。当这一要求无法满足时,可以使用迁移学习从标记数据量比期望目标域更多的源域转移知识。在本研究中,提出了一种基于梯度提升机(GBM)的基于实例的迁移学习框架。在GBM中,构建一系列基学习器,每个学习器关注前一个学习器的误差(残差)。在我们的GBM迁移学习版本(TrGB)中,为源实例定义了一种基于基学习器残差的加权机制。因此,与目标数据分布不同的实例对目标学习器的影响较小。所提出的加权方案旨在从源域转移尽可能多的信息,同时避免负迁移。本研究中的目标数据来自西奈山数据集,该数据集是在西奈山医疗中心为期5年的合作项目中收集和处理的。阿尔茨海默病神经影像倡议(ADNI)数据集用作源域。实验结果表明,与传统方法相比,所提出的TrGB算法在CN与MCI分类以及多类分类中分别可将分类准确率提高1.5%和4.5%。此外,使用TrGB模型和从源域的CN与AD分类转移的知识,早期MCI与晚期MCI分类的平均得分提高了5%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b05/9581117/fe7b4617685d/fnagi-14-966883-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验