Suppr超能文献

人工智能方法促进了RNA相互作用的发现。

Artificial intelligence methods enhance the discovery of RNA interactions.

作者信息

Pepe G, Appierdo R, Carrino C, Ballesio F, Helmer-Citterich M, Gherardini P F

机构信息

Department of Biology, University of Rome "Tor Vergata", Rome, Italy.

PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome "Tor Vergata", Rome, Italy.

出版信息

Front Mol Biosci. 2022 Oct 7;9:1000205. doi: 10.3389/fmolb.2022.1000205. eCollection 2022.

Abstract

Understanding how RNAs interact with proteins, RNAs, or other molecules remains a challenge of main interest in biology, given the importance of these complexes in both normal and pathological cellular processes. Since experimental datasets are starting to be available for hundreds of functional interactions between RNAs and other biomolecules, several machine learning and deep learning algorithms have been proposed for predicting RNA-RNA or RNA-protein interactions. However, most of these approaches were evaluated on a single dataset, making performance comparisons difficult. With this review, we aim to summarize recent computational methods, developed in this broad research area, highlighting feature encoding and machine learning strategies adopted. Given the magnitude of the effect that dataset size and quality have on performance, we explored the characteristics of these datasets. Additionally, we discuss multiple approaches to generate datasets of negative examples for training. Finally, we describe the best-performing methods to predict interactions between proteins and specific classes of RNA molecules, such as circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), and methods to predict RNA-RNA or RNA-RBP interactions independently of the RNA type.

摘要

鉴于这些复合物在正常和病理细胞过程中的重要性,了解RNA如何与蛋白质、RNA或其他分子相互作用仍然是生物学中主要关注的一个挑战。由于实验数据集开始可用于RNA与其他生物分子之间数百种功能相互作用,已经提出了几种机器学习和深度学习算法来预测RNA-RNA或RNA-蛋白质相互作用。然而,这些方法大多是在单个数据集上进行评估的,这使得性能比较变得困难。通过这篇综述,我们旨在总结在这个广泛的研究领域中最近开发的计算方法,突出所采用的特征编码和机器学习策略。鉴于数据集大小和质量对性能的影响程度,我们探讨了这些数据集的特征。此外,我们讨论了生成用于训练的负样本数据集的多种方法。最后,我们描述了预测蛋白质与特定类型RNA分子(如环状RNA(circRNA)和长链非编码RNA(lncRNA))之间相互作用的最佳性能方法,以及独立于RNA类型预测RNA-RNA或RNA-核糖核蛋白体(RBP)相互作用的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7cd/9585310/1dd8d059e4ac/fmolb-09-1000205-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验