Zhao Guoqing, Li Pengpai, Qiao Xu, Han Xianhua, Liu Zhi-Ping
Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, China.
Faculty of Science, Yamaguchi University, Yamaguchi, Japan.
Front Genet. 2022 Feb 4;12:814073. doi: 10.3389/fgene.2021.814073. eCollection 2021.
lncRNA-protein interactions play essential roles in a variety of cellular processes. However, the experimental methods for systematically mapping of lncRNA-protein interactions remain time-consuming and expensive. Therefore, it is urgent to develop reliable computational methods for predicting lncRNA-protein interactions. In this study, we propose a computational method called LncPNet to predict potential lncRNA-protein interactions by embedding an lncRNA-protein heterogenous network. The experimental results indicate that LncPNet achieves promising performance on benchmark datasets extracted from the NPInter database with an accuracy of 0.930 and area under ROC curve (AUC) of 0.971. In addition, we further compare our method with other eight state-of-the-art methods, and the results illustrate that our method achieves superior prediction performance. LncPNet provides an effective method via a new perspective of representing lncRNA-protein heterogenous network, which will greatly benefit the prediction of lncRNA-protein interactions.
长链非编码RNA(lncRNA)与蛋白质的相互作用在多种细胞过程中发挥着重要作用。然而,用于系统绘制lncRNA与蛋白质相互作用的实验方法仍然既耗时又昂贵。因此,迫切需要开发可靠的计算方法来预测lncRNA与蛋白质的相互作用。在本研究中,我们提出了一种名为LncPNet的计算方法,通过嵌入lncRNA - 蛋白质异质网络来预测潜在的lncRNA与蛋白质的相互作用。实验结果表明,LncPNet在从NPInter数据库提取的基准数据集上取得了良好的性能,准确率为0.930,ROC曲线下面积(AUC)为0.971。此外,我们进一步将我们的方法与其他八种先进方法进行比较,结果表明我们的方法具有卓越的预测性能。LncPNet通过一种表示lncRNA - 蛋白质异质网络的新视角提供了一种有效方法,这将极大地有助于lncRNA与蛋白质相互作用的预测。